⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 designhbf.m

📁 Oversampling Delta-Sigma Data Converters
💻 M
字号:
function [f1_saved,f2_saved,info]=designHBF(fp,delta,debug)%function [f1,f2,info]=designHBF(fp=0.2,delta=1e-5,debug=0)%Design a half-band filter which can be realized without general multipliers.%The filter is a composition of a prototype and sub- filter.%Input% fp	The normalized cutoff frequency of the filter. Due to the%	symmetry imposed by a HBF, the stopband begins at 0.5-fp.% delta	The absolute value of the deviation of the frequency response from %	the ideal values of 1 in the passband and  0 in the stopband.%%Output% f1,f2	The coefficients of the prototype and sub-filters%	and their canonical-signed digit (csd) representation.% info	A vector containing the following data (only set when debug=1):%	complexity	The number of additions per output sample.%	n1,n2		The length of the f1 and f2 vectors.%	sbr		The achieved stob-band attenuation (dB).%	phi		The scaling factor for the F2 filter.% To Do: Clean up the code a bit more, esp. wrt the use of the struct. arrays.%	 Use the phi variable to cut down on the number of adders in F2.%	 Apply a simulated annealing/genetic optimization alg instead%	 of the ad hoc one I have now.%Handle the input argumentsparameters = ['fp   ';'delta';'debug'];defaults = [ 0.2 1e-5 0];for i=1:length(defaults)    if i>nargin       eval([parameters(i,:) '=defaults(i);'])    elseif eval(['any(isnan(' parameters(i,:) ')) | isempty(' parameters(i,:) ')'])        eval([parameters(i,:) '=defaults(i);'])    endend%Try several different values for the fp1 parameter.%The best values are usually around .04%Surrender if 3 successive attempts yield progressively greater complexity.lowest_complexity = Inf;	prev_complexity = Inf;for fp1 = [.03 .035 .025 .040 .020 .045 .015 .05]    failed = 0;    [f1 zetap phi] = designF1( delta, fp1 );    if zetap == 1	% designF1 failed	failed = 1;	if debug	    fprintf(2,'designF1 failed at fp1=%f\n',fp1);	end    end    if ~failed	f2 = designF2( fp, zetap, phi );	n1 = length(f1);	n2 = length(f2);	if n2 == 0		% designF2 failed	    failed = 1;	    if debug		fprintf(2,'designF2 failed when zetap=%f, phi=%f\n',zetap,phi);	    end	end    end    if ~failed	% complexity(+ performance)  = the number of two-input adders (+ sbr)	complexity =  size([f1.csd],2) + (2*n1-1)*(n2+size([f2.csd],2)-1);	if debug	    msg = sprintf('%d adders: n1=%d, n2=%d, (fp1=%.2f, zetap=%.3f, phi=%4.2f)', ...		complexity, n1, n2, fp1, zetap, phi );	else	    msg = '';	end	[fresp pbr sbr] = frespHBF([], f1, f2, phi, fp, msg);	if pbr <= delta & sbr <= delta          	    complexity = complexity + sbr;	    if complexity < prev_complexity		worse = 0;		if complexity < lowest_complexity 		    lowest_complexity = complexity;		    f1_saved = f1;	f2_saved = f2;		    phi_saved = phi;		    if debug			fprintf( 1, '%s\n', msg )		    end		end	    else		worse = worse + 1;		if worse > 2		    break;		end	    end	    prev_complexity = complexity;	end	    % if pbr <= delta    end	    end	    % for fp1if isinf(lowest_complexity)    fprintf(1,'%s: Unable to meet the design requirements.\n', mfilename);elseif debug     complexity = floor(lowest_complexity);    msg = sprintf( 'Final Design: %d adders', complexity);    [junk pbr sbr] = frespHBF([], f1_saved, f2_saved, phi_saved, fp, msg);    n1 = length(f1_saved);	n2 = length(f2_saved);    fprintf(1,'%s (%d,%d,%.0fdB)\n', msg,n1,n2,dbv(sbr));    info = [ complexity n1 n2 dbv(sbr) phi_saved ];endreturnfunction [f1_saved,zetap,phi] = designF1(delta, fp1)% [f1 zetap phi] = designF1(delta, fp1)		Design the F1 sub-filter% of a Saramaki halfband filter. This function is called by designHBF.m.%% f1    A structure array containing the F1 filter coefficents and%       Their CSD representation.% phi	The scaling factor for the F2 filter (imbedded in the f1 coeffs.)passband = exp(4*pi*j*linspace(0,fp1));ok = 0;for n1 = 1:2:7 	% Odd values only    if n1 == 1	h = [0.5 0.5];    else	h = firpm(2*n1-1,[0 4*fp1 1 1],[1 1 0 0]);	if ~(abs(sum(h)-1) < 1e-3 )		% remez bug! Use firls instead	    h = firls(2*n1-1,[0 4*fp1 1-1e-6 1],[1 1 0 0]);	end    end    fresp = abs( polyval(h,passband) );    if max( abs(fresp-1) ) <= delta	ok = 1;	break    endendif ~ok    zetap = 1;	% Use this as an indication that the function failed.    returnend% Transform h(n) to a chebyshev polynomial f1(n)% Sum(f1(i)*cos(w)^n)|i=1:n1 + Sum(h(n1+i))*cos(n*w))|i=1:n1, n = 2*i-1;w = pi*rand(1,n1);cos_w = cos(w);A = zeros(n1,length(w));B = zeros(1,n1);for i = 1:n1    n = 2*i-1;    A(i,:) = cos_w .^ n;    B = B + h(n1+i)* cos(n*w);endf1 = B/A;% Matlab Ver. 5 change:phivecb = [];% Optimize the quantized version of f1 to maximize the stopband width % ( = acos(zetap) )zetap = 1;testPoints = [0 logspace(-2,0,128)] - 1;for nsd = 3:8    f1a = f1'; f1b = f1'; 		% First try the unperturbed filter.    for phia = 1 ./ [1 f1]	phia = phia / 2^nextpow2(phia); % keep phi in (0.5,1]	% Try a bunch of coefficients in the current neighborhood,	% shrinking the neighborhood once 10 successive trial values show no	% improvement.  If 2 successive shrinkages do no good, try a higher nsd.	count = 0;	nohelp = 0;	neighborhood = .05;	while neighborhood > 1e-5	    phivec = phia .^ [1:2:2*n1-1]';% Matlab Ver. 5 change:	    if isempty(phivecb); phivecb = phivec; end	    f1q = bquantize( f1a.*phivec, nsd );	    F1 = evalF1( [f1q.val], testPoints, phia );	    fi = find( abs(F1) > delta ); 	    zeta = -testPoints( max( fi(1)-1, 1 ) );	    %fprintf(2,'nsd=%d, nbhd= %f, count=%d, zeta = %f, phia=%f\n', ...	    %  nsd, neighborhood, count, zeta, phia );	    if zeta < zetap		count = 0;		nohelp = 0;		zetap = zeta;		f1b = [f1q.val]';		f1_saved = f1q;		phi = phia;		phivecb = phivec;	    else		count = count + 1;	    end	    if count > 10		count = 0;		neighborhood = neighborhood/2;		nohelp = nohelp +1;		if nohelp > 2		    break;		end	    end	    f1a = f1b./phivecb + neighborhood*(rand(size(f1b))-0.5);	    phia = phia + neighborhood*(rand(1,1)-0.5);	end	if zetap < 1	% Found a filter with adequate attn.	    break;	end    end			% for phia ...    if zetap < 1	% Found a filter with adequate attn.	break;    endendreturnfunction f2 = designF2(fp,zetap,phi)% f2 = designF2(fp,zetap,phi)		Design the F2 sub-filter% of a Saramaki halfband filter.  This function is called by designHBF.m.% subfilter design:%   1 - delta2' < |F2/phi| < 1 	for f in [0 fp];%  -1 < |F2/phi| < -1 + delta2'	for f in [0.5-fp, 0.5];%   1-delta2' = (1-delta2)/(1+delta2)delta2 = (1-zetap)/(1+zetap);%delta2p = 1 - (1-delta2)/(1+delta2);% determine the minimum order required by the filterpassband = exp(j*linspace(0,4*pi*fp));for nsub = 3:2:17    h2 = firpm(nsub,[0 4*fp 1 1], [1 1 0 0]);    mag = abs( polyval(h2,passband) );    if max(abs(mag-1)) < delta2;	break;    endendn2min = (nsub+1)/2;% Search all n2,nsd pairs, in order of the product n2*(nsd+1)% allowing fp to be a variable?success = 0;nsdmin = 3;	nsdmax = 6;for product = (nsdmin+1)*n2min:(nsdmax+1)*n2min    for nsd = nsdmin:nsdmax    	n2 = product/(nsd+1);	if floor(n2) ~= n2	% Only take integer n2,nsd pairs	    break	end	nsub = 2*n2-1;	% Could try a bunch of fp values	%fprintf(2,'designF2: Trying (n2,nsd2,fp)=(%2d,%2d,%6.4f)\n',n2,nsd,fp);	h2 = firpm(nsub,[0 4*fp 1 1], [1 1 0 0]);	h2 =  h2/(phi*(1+delta2));		% Adjust the coefficients.	f2 = bquantize( h2(n2+1:nsub+1), nsd );	h2 = (1+delta2)*phi*[f2(n2:-1:1).val f2.val];	mag = abs( polyval(h2,passband) );	if max(abs(mag-1)) < delta2;	    success =1;	    break;	end    end    if success	break;    endendif ~success    f2 = [];     q2 = [];endreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -