📄 find_params.m
字号:
function out=find_params(TFS,HS)
% function out=find_params(TFS,HS)
%
% This function solves (if possible) the values for symbolic parameters in HS.
% Basicly this function is about solving a system of equations.
%
% TFS is a transfer function or a cluster of transfer functions from a
% system (tf obj). HS is the same in a symbolic form.
%
% TFS is tf object(s): [TF(1) TF(2) ...]
% HS is sym obj: [H1(z) H2(z) ...] (the variable can be other than z)
%
% For Delta sigma modulator designers:
% Does the same as in DS toolbox [a,g,b,c]=realizeNTF(NTF,FORM,STF), but the
% FORM is now not restricted to 'CIFB', 'CRFB','CIFF' and 'CRFF'.
precision=8;deno=1;denold=1;
stringi='out=solve(';
fprintf('\n')
for main_ind = 1:length(HS)
H=HS(main_ind);
TFOBJ=TFS(main_ind);
if length(HS)>1
[num,den]=tfdata(tf(minreal(TFOBJ)),'v');
else
[num,den]=tfdata(tf(TFOBJ),'v');
end
denold=den;
if length(num)==1 %den==1
if deno == 1;
error('if you want a scalar tf, give the tf in num/den form')
end
num=num*deno;den=deno; %old tf assumed to be parsed
end
deno=den;
ORDER=max([length(den) length(num)])-1;
[n,d]=numden(simple(H));
params_n = extract_symterms(n,ORDER); % Sort numerator parameters in descending order
params_d = extract_symterms(d,ORDER); % Sort denominator ----"----
for ind =1:length(den)
if ~isempty(findsym(sym(char(params_n(ind)))))
stringi=[stringi char(39) char(params_n(ind)) '=' num2str(num(ind),precision) char(39) ','];
fprintf('%s = %3.8g\n',char(params_n(ind)),num(ind));
end
if ~isempty(findsym(sym(char(params_d(ind))))) & denold == deno %latter is ds add-on for stf
stringi=[stringi char(39) char(params_d(ind)) '=' num2str(den(ind),precision) char(39) ','];
fprintf('%s = %3.8g\n',char(params_d(ind)),den(ind));
end
end
stringit{ind}=stringi;
end
stringi(end)=')';stringi=[stringi ';'];
fprintf('\n')
warning off backtrace
eval(stringi)
warning on backtrace
try % to perform numeric evaluation
fn=fieldnames(out);
for indf=1:length(fn)
eval(['blaa.' char(fn(indf)) '=' num2str(char(getfield(out,char(fn(indf)))),32) ';'])
end
if ~isempty(out)
clear out,out=blaa;
end
end
if isempty(out) & length(HS)>1
fprintf('\n\nSince explicit solution was not found, lets try solving systems separately:\n')
out={};
for main_ind = 1:length(HS)
out=[out {find_params(TFS(main_ind),HS(main_ind))}];
out{main_ind}
end
if ~isempty(out),fprintf('\nSuccess!!!\n'),end
elseif isempty(out) & length(HS)==1
fprintf('\n\nNope. Solution not found.\n')
else
fprintf('\nSuccess!!!\n')
end
function out=extract_symterms(Eq_sym,ORDER,obj)
% function out=extract_symterms(Eq_sym,ORDER,obj)
%
% Sort parameters of symbolic polynomial Eq_sym by finding the
% multiplicands defined in char variable called obj.
% In some cases it is hard to decipher the ORDER of Eq_sym,
% so I decided to let the user provide it.
% The output is a cell array whose powers are in descending order,
% i.e highest order parameter is first.
%
% Example: x=sym('z^3+z^2*(-3+c2*c3*g1)+z*(3-c2*c3*g1)');
% out=extract_symterms(x,3,'z')
if nargin==2
obj='z';
elseif nargin==3
if length(obj)>1
error('The variable should be a one-letter char')
elseif isnumeric(obj)
error('Third term is a character')
end
end
x=char(expand(Eq_sym));
mask=sort([find(x=='-') find(x=='+')]);
ttt{1}=x(1:(mask(1)-1));
if nargin==1
mxp=find(char(ttt)=='^');
mttt=char(ttt);
ORDER=eval(mttt(mxp+1));
obj=mttt(mxp-1);
fprintf('\nWarning: Order and variable are not given, guessing: \nvariable = %c\norder = %i\n',obj,ORDER)
end
for ind=1:(length(mask)-1)
temp=x(mask(ind):(mask(ind+1)-1));
ttt{ind+1}=temp;
end
ttt{ind+2}=x(mask(end):end);
for ORD=0:ORDER
termi=[];
for ind=1:length(ttt)
if ORD==1
if any(char(ttt(ind))==obj) & ~any(char(ttt(ind))=='^')
termi=[termi '+' char(ttt(ind))];
end
elseif ORD==0
if ~any(char(ttt(ind))==obj)
%if (char(ttt(ind:(ind+length(obj)-1)))==obj)
termi=[termi '+' char(ttt(ind))];
end
else
if findstr(char(ttt(ind)),[obj '^' int2str(ORD)])
termi=[termi '+' char(ttt(ind))];
end
end
end
mask=sort([findstr(termi,'++') findstr(termi,'--')]);
for innnd=length(mask):-1:1
termi(mask(innnd)+1)=[];
termi(mask(innnd))='+';
end
mask=sort([findstr(termi,'-+') findstr(termi,'+-')]);
for innnd=length(mask):-1:1
termi(mask(innnd)+1)=[];
termi(mask(innnd))='-';
end
if ORD>0 & ~isempty(termi)
termi=char(simplify(sym(['(' termi ')/' obj '^' int2str(ORD)])));
end
if isempty(termi),termi='0';end
out{ORD+1}=termi;
end
out = flipud(transpose(out));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -