📄 uvwdot.htm
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<link rel="stylesheet" type="text/css" href="fdchelp.css">
<title>
FDC help: uvwdot
</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
</head>
<body bgcolor="#DDDDDD"><div>
<h2>
Subsystem <i>uvwdot</i>
</h2>
<p>The block <i>uvwdot</i>, which is contained
in the subsystem <i><a href="moreouts.htm">Additional Outputs</a></i> from
the <i><a href="beaver.htm">Beaver</a></i> model, computes time-derivatives of the body-axes velocity components <i>u</i>,
<i>v</i>, and <i>w</i>.</p>
<p><i>uvwdot</i> is an additional output block, which is
<i>not</i> needed to solve the state equations themselves, because the true airspeed <i>V</i>, angle of attack <i>alpha</i>, and sideslip angle <i>beta</i> have been used as state variables for the aircraft model, instead of <i>u</i>, <i>v</i>, and <i>w</i>! Nowhere in the <i>Beaver</i> model time-derivatives of the body-axes velocities are sent through an integrator
block or used by other blocks which are necessary to solve the equations of
motion; therefore, <i>uvwdot</i> can be deleted from the <i>Beaver</i> model without affecting the solution of the equations of motion.</p>
<p><b>Note:</b> contrary to <i>uvwdot</i>, the block <i><a href=
"uvw.htm">uvw</a></i> which is contained in the subsystem <i><a href=
"eqmotion.htm">Aircraft equations of motion</a></i> may <i>not</i> be
removed from the system, because the outputs from that block (<i>u</i>,
<i>v</i> and <i>w</i>) are needed in order to compute the aircraft's
coordinates.</p>
<p>The equations in <i>uvwdot</i> are, of course, closely related to the
time-derivatives of the other state variables. See therefore the
descriptions of the subsystems <i><a href="eqmotion.htm">Aircraft Equations
of Motion</a></i>, <i><a href="12odes.htm">12 ODEs</a></i>, <i><a href=
"vabdot.htm">Vabdot</a></i>, <i><a href="pqrdot.htm">pqrdot</a></i>, <i><a
href="eulerdot.htm">Eulerdot</a></i>, and <i><a href=
"xyhdot.htm">xyHdot</a></i> for more information. </p>
<h3>
Inputvectors: <i>x</i>, <i>xdot</i>, and <i>yhlp</i>
</h3>
<pre>
x = [V alpha beta p q r psi theta phi xe ye H]' (states)
xdot = dx'/dt (time derivative of state vector)
yhlp = [cos(alpha) sin(alpha) cos(beta) sin(beta) ...
... tan(beta) sin(psi) cos(psi) sin(theta) ...
... cos(theta) sin(phi) cos(phi)]'
(frequently used sines and cosines, coming from <a href=
"hlpfcn.htm">Hlpfcn</a>)
V : airspeed [m/s]
{alpha: angle of attack [rad] }
{beta : sideslip angle [rad] }
{p : roll rate [rad/s] }
{q : pitch rate [rad/s] }
{r : yaw rate [rad/s] }
{psi : yaw angle [rad] }
{theta: pitch angle [rad] }
{phi : roll angle [rad] }
{xe : x-coordinate in Earth-fixed reference frame [m] }
{ye : y-coordinate '' '' '' '' [m] }
{H : altitude above sea-level [m] }
</pre>
<p>The inputvariables which are not actually used by <i>uvwdot</i> have been
displayed between curly braces. Of the vector <i>xdot</i>, the time
derivatives of <i>V</i>, <i>alpha</i>, and <i>beta</i> are used; from
<i>yhlp</i>, <i>cos(alpha)</i>, <i>sin(alpha)</i>, <i>cos(beta)</i>, and
<i>sin(beta)</i> are extracted.</p>
<h3>
Outputvector: <i>yuvw</i>
</h3>
<pre>
yuvw = [udot vdot wdot]' = d/dt([u v w]')
u : velocity component along the XB (body-) axis [m/s]
v : velocity component along the YB axis [m/s]
w : velocity component along the ZB axis [m/s]
</pre>
</div></body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -