📄 vabdot.htm
字号:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<link rel="stylesheet" type="text/css" href="fdchelp.css">
<title>
FDC help: Vabdot
</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
</head>
<body bgcolor="#DDDDDD"><div>
<h2>
Subsystem <i>Vabdot</i>
</h2>
<p><i>Vabdot</i> computes
time-derivatives of the true airspeed, angle of attack, and side-slip
angle. It is contained in the block <i><a href="12odes.htm">12
ODEs</a></i> of the subsystem <i><a href="eqmotion.htm">Aircraft Equations
of Motion</a></i> in the <i><a href="beaver.htm">Beaver</a></i> model.
The remaining nine differential equations are stored in the subsystems
<i><a href="pqrdot.htm">pqrdot</a></i>, <i><a href=
"eulerdot.htm">Eulerdot</a></i>, and <i><a href=
"xyhdot.htm">xyHdot</a></i>, which are all contained in <i>12 ODEs</i>.</p>
<p><b>Note:</b> the time-derivative of the sideslip angle <i>beta</i> that
leaves <i>Vabdot</i> does not take into account the influence of beta-dot
itself upon the aerodynamic force along the <i>Y<sub>B</sub></i>-axis. This
contribution was neglected in the block <i><a href=
"aeromod.htm">Aeromod</a></i> and has therefore not been included in the
computed side-force. The resulting error to the time-derivative
of the state vector, <i>xdot</i>, has been corrected later in the system, by means of the block <i><a
href="xdotcorr.htm">xdotcorr</a></i>.</p>
<h3>
Inputvector: <i>uvab</i>
</h3>
<pre>
uvab = [x' Ftot' Mtot' yhlp'],
x = [V alpha beta p q r psi theta phi xe ye H]' (states)
Ftot = [Fx Fy Fz]' (total forces along the body-axes,
computed in the block <a href=
"fmdims.htm">FMdims</a>)
Mtot = [L M N]' (total moments along the body-axes,
computed in the block <a href=
"fmdims.htm">FMdims</a>)
yhlp = [cos(alpha) sin(alpha) cos(beta) sin(beta) ...
... tan(beta) sin(psi) cos(psi) sin(theta) ...
... cos(theta) sin(phi) cos(phi)]'
(frequently used sines & cosines, coming from <a href=
"hlpfcn.htm">Hlpfcn</a>)
V : airspeed [m/s]
{alpha: angle of attack [rad] }
{beta : sideslip angle [rad] }
p : roll rate [rad/s]
q : pitch rate [rad/s]
r : yaw rate [rad/s]
{psi : yaw angle [rad] }
{theta: pitch angle [rad] }
{phi : roll angle [rad] }
{xe : x-coordinate in Earth-fixed reference frame [m] }
{ye : y-coordinate '' '' '' '' [m] }
{H : altitude above sea-level [m] }
Fx, Fy, Fz: total forces along the aircraft's body-axes [N]
{L, M, N : total moments along the aircraft's body-axes [Nm] }
</pre>
<p>The inputvariables which are not actually used by <i>Vabdot</i> have been
displayed between brackets. Of the inputvector <i>yhlp</i>,
<i>cos(alpha)</i>, <i>cos(beta)</i>, <i>sin(alpha)</i>, <i>sin(beta)</i>,
and <i>tan(beta)</i> are used.</p>
<h3>
Outputvector: <i>yvab</i>
</h3>
<pre>
yvab = [Vdot alphadot betadot]'
Vdot : dV/dt [m/s^2]
alphadot: d(alpha)/dt [rad/s^2]
betadot : d(beta)/dt [rad/s^2]
</pre>
<p>Note: the beta-dot equation in <i>Vabdot</i> does <i>not</i> take into
account the contribution of beta-dot itself to the sideforce
<i>F<sub>y</sub></i>. Corrections are made in <i><a href=
"xdotcorr.htm">xdotcorr</a></i>.</p>
<h3>
Parameters to be defined in the Matlab workspace
</h3>
<ul>
<li>
<i>GM1</i>: vector with some important geometrical properties of the
'Beaver' aircraft, and the mass of the aircraft (which is
assumed to be constant during the motions of interest). Here, the mass
of the aircraft is extracted from <i>GM1</i>. <i>GM1</i> can be loaded
into the Matlab workspace by calling the routine <i><a href=
"datload.htm">DATLOAD</a></i>. If the necessary datafile with aircraft
model parameters does not yet exist, run <i><a href=
"modbuild.htm">MODBUILD</a></i> first.
</li>
</ul>
</div></body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -