📄 vasnprintf.c
字号:
s -= 2; } if (msd >= 0x2) { msd = msd >> 1; s -= 1; } } /* 0 <= s < GMP_LIMB_BITS. Copy b, shifting it left by s bits. */ if (s > 0) { tmp_roomptr = (mp_limb_t *) malloc (b_len * sizeof (mp_limb_t)); if (tmp_roomptr == NULL) { free (roomptr); return NULL; } { const mp_limb_t *sourceptr = b_ptr; mp_limb_t *destptr = tmp_roomptr; mp_twolimb_t accu = 0; size_t count; for (count = b_len; count > 0; count--) { accu += (mp_twolimb_t) *sourceptr++ << s; *destptr++ = (mp_limb_t) accu; accu = accu >> GMP_LIMB_BITS; } /* accu must be zero, since that was how s was determined. */ if (accu != 0) abort (); } b_ptr = tmp_roomptr; } /* Copy a, shifting it left by s bits, yields r. Memory layout: At the beginning: r = roomptr[0..a_len], at the end: r = roomptr[0..b_len-1], q = roomptr[b_len..a_len] */ r_ptr = roomptr; if (s == 0) { memcpy (r_ptr, a_ptr, a_len * sizeof (mp_limb_t)); r_ptr[a_len] = 0; } else { const mp_limb_t *sourceptr = a_ptr; mp_limb_t *destptr = r_ptr; mp_twolimb_t accu = 0; size_t count; for (count = a_len; count > 0; count--) { accu += (mp_twolimb_t) *sourceptr++ << s; *destptr++ = (mp_limb_t) accu; accu = accu >> GMP_LIMB_BITS; } *destptr++ = (mp_limb_t) accu; } q_ptr = roomptr + b_len; q_len = a_len - b_len + 1; /* q will have m-n+1 limbs */ { size_t j = a_len - b_len; /* m-n */ mp_limb_t b_msd = b_ptr[b_len - 1]; /* b[n-1] */ mp_limb_t b_2msd = b_ptr[b_len - 2]; /* b[n-2] */ mp_twolimb_t b_msdd = /* b[n-1]*beta+b[n-2] */ ((mp_twolimb_t) b_msd << GMP_LIMB_BITS) | b_2msd; /* Division loop, traversed m-n+1 times. j counts down, b is unchanged, beta/2 <= b[n-1] < beta. */ for (;;) { mp_limb_t q_star; mp_limb_t c1; if (r_ptr[j + b_len] < b_msd) /* r[j+n] < b[n-1] ? */ { /* Divide r[j+n]*beta+r[j+n-1] by b[n-1], no overflow. */ mp_twolimb_t num = ((mp_twolimb_t) r_ptr[j + b_len] << GMP_LIMB_BITS) | r_ptr[j + b_len - 1]; q_star = num / b_msd; c1 = num % b_msd; } else { /* Overflow, hence r[j+n]*beta+r[j+n-1] >= beta*b[n-1]. */ q_star = (mp_limb_t)~(mp_limb_t)0; /* q* = beta-1 */ /* Test whether r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] >= beta <==> r[j+n]*beta+r[j+n-1] + b[n-1] >= beta*b[n-1]+beta <==> b[n-1] < floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) {<= beta !}. If yes, jump directly to the subtraction loop. (Otherwise, r[j+n]*beta+r[j+n-1] - (beta-1)*b[n-1] < beta <==> floor((r[j+n]*beta+r[j+n-1]+b[n-1])/beta) = b[n-1] ) */ if (r_ptr[j + b_len] > b_msd || (c1 = r_ptr[j + b_len - 1] + b_msd) < b_msd) /* r[j+n] >= b[n-1]+1 or r[j+n] = b[n-1] and the addition r[j+n-1]+b[n-1] gives a carry. */ goto subtract; } /* q_star = q*, c1 = (r[j+n]*beta+r[j+n-1]) - q* * b[n-1] (>=0, <beta). */ { mp_twolimb_t c2 = /* c1*beta+r[j+n-2] */ ((mp_twolimb_t) c1 << GMP_LIMB_BITS) | r_ptr[j + b_len - 2]; mp_twolimb_t c3 = /* b[n-2] * q* */ (mp_twolimb_t) b_2msd * (mp_twolimb_t) q_star; /* While c2 < c3, increase c2 and decrease c3. Consider c3-c2. While it is > 0, decrease it by b[n-1]*beta+b[n-2]. Because of b[n-1]*beta+b[n-2] >= beta^2/2 this can happen only twice. */ if (c3 > c2) { q_star = q_star - 1; /* q* := q* - 1 */ if (c3 - c2 > b_msdd) q_star = q_star - 1; /* q* := q* - 1 */ } } if (q_star > 0) subtract: { /* Subtract r := r - b * q* * beta^j. */ mp_limb_t cr; { const mp_limb_t *sourceptr = b_ptr; mp_limb_t *destptr = r_ptr + j; mp_twolimb_t carry = 0; size_t count; for (count = b_len; count > 0; count--) { /* Here 0 <= carry <= q*. */ carry = carry + (mp_twolimb_t) q_star * (mp_twolimb_t) *sourceptr++ + (mp_limb_t) ~(*destptr); /* Here 0 <= carry <= beta*q* + beta-1. */ *destptr++ = ~(mp_limb_t) carry; carry = carry >> GMP_LIMB_BITS; /* <= q* */ } cr = (mp_limb_t) carry; } /* Subtract cr from r_ptr[j + b_len], then forget about r_ptr[j + b_len]. */ if (cr > r_ptr[j + b_len]) { /* Subtraction gave a carry. */ q_star = q_star - 1; /* q* := q* - 1 */ /* Add b back. */ { const mp_limb_t *sourceptr = b_ptr; mp_limb_t *destptr = r_ptr + j; mp_limb_t carry = 0; size_t count; for (count = b_len; count > 0; count--) { mp_limb_t source1 = *sourceptr++; mp_limb_t source2 = *destptr; *destptr++ = source1 + source2 + carry; carry = (carry ? source1 >= (mp_limb_t) ~source2 : source1 > (mp_limb_t) ~source2); } } /* Forget about the carry and about r[j+n]. */ } } /* q* is determined. Store it as q[j]. */ q_ptr[j] = q_star; if (j == 0) break; j--; } } r_len = b_len; /* Normalise q. */ if (q_ptr[q_len - 1] == 0) q_len--;# if 0 /* Not needed here, since we need r only to compare it with b/2, and b is shifted left by s bits. */ /* Shift r right by s bits. */ if (s > 0) { mp_limb_t ptr = r_ptr + r_len; mp_twolimb_t accu = 0; size_t count; for (count = r_len; count > 0; count--) { accu = (mp_twolimb_t) (mp_limb_t) accu << GMP_LIMB_BITS; accu += (mp_twolimb_t) *--ptr << (GMP_LIMB_BITS - s); *ptr = (mp_limb_t) (accu >> GMP_LIMB_BITS); } }# endif /* Normalise r. */ while (r_len > 0 && r_ptr[r_len - 1] == 0) r_len--; } /* Compare r << 1 with b. */ if (r_len > b_len) goto increment_q; { size_t i; for (i = b_len;;) { mp_limb_t r_i = (i <= r_len && i > 0 ? r_ptr[i - 1] >> (GMP_LIMB_BITS - 1) : 0) | (i < r_len ? r_ptr[i] << 1 : 0); mp_limb_t b_i = (i < b_len ? b_ptr[i] : 0); if (r_i > b_i) goto increment_q; if (r_i < b_i) goto keep_q; if (i == 0) break; i--; } } if (q_len > 0 && ((q_ptr[0] & 1) != 0)) /* q is odd. */ increment_q: { size_t i; for (i = 0; i < q_len; i++) if (++(q_ptr[i]) != 0) goto keep_q; q_ptr[q_len++] = 1; } keep_q: if (tmp_roomptr != NULL) free (tmp_roomptr); q->limbs = q_ptr; q->nlimbs = q_len; return roomptr;}/* Convert a bignum a >= 0, multiplied with 10^extra_zeroes, to decimal representation. Destroys the contents of a. Return the allocated memory - containing the decimal digits in low-to-high order, terminated with a NUL character - in case of success, NULL in case of memory allocation failure. */static char *convert_to_decimal (mpn_t a, size_t extra_zeroes){ mp_limb_t *a_ptr = a.limbs; size_t a_len = a.nlimbs; /* 0.03345 is slightly larger than log(2)/(9*log(10)). */ size_t c_len = 9 * ((size_t)(a_len * (GMP_LIMB_BITS * 0.03345f)) + 1); char *c_ptr = (char *) malloc (xsum (c_len, extra_zeroes)); if (c_ptr != NULL) { char *d_ptr = c_ptr; for (; extra_zeroes > 0; extra_zeroes--) *d_ptr++ = '0'; while (a_len > 0) { /* Divide a by 10^9, in-place. */ mp_limb_t remainder = 0; mp_limb_t *ptr = a_ptr + a_len; size_t count; for (count = a_len; count > 0; count--) { mp_twolimb_t num = ((mp_twolimb_t) remainder << GMP_LIMB_BITS) | *--ptr; *ptr = num / 1000000000; remainder = num % 1000000000; } /* Store the remainder as 9 decimal digits. */ for (count = 9; count > 0; count--) { *d_ptr++ = '0' + (remainder % 10); remainder = remainder / 10; } /* Normalize a. */ if (a_ptr[a_len - 1] == 0) a_len--; } /* Remove leading zeroes. */ while (d_ptr > c_ptr && d_ptr[-1] == '0') d_ptr--; /* But keep at least one zero. */ if (d_ptr == c_ptr) *d_ptr++ = '0'; /* Terminate the string. */ *d_ptr = '\0'; } return c_ptr;}# if NEED_PRINTF_LONG_DOUBLE/* Assuming x is finite and >= 0: write x as x = 2^e * m, where m is a bignum. Return the allocated memory in case of success, NULL in case of memory allocation failure. */static void *decode_long_double (long double x, int *ep, mpn_t *mp){ mpn_t m; int exp; long double y; size_t i; /* Allocate memory for result. */ m.nlimbs = (LDBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS; m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t)); if (m.limbs == NULL) return NULL; /* Split into exponential part and mantissa. */ y = frexpl (x, &exp); if (!(y >= 0.0L && y < 1.0L)) abort (); /* x = 2^exp * y = 2^(exp - LDBL_MANT_BIT) * (y * LDBL_MANT_BIT), and the latter is an integer. */ /* Convert the mantissa (y * LDBL_MANT_BIT) to a sequence of limbs. I'm not sure whether it's safe to cast a 'long double' value between 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only 'long double' values between 0 and 2^16 (to 'unsigned int' or 'int', doesn't matter). */# if (LDBL_MANT_BIT % GMP_LIMB_BITS) != 0# if (LDBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2 { mp_limb_t hi, lo; y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % (GMP_LIMB_BITS / 2)); hi = (int) y; y -= hi; if (!(y >= 0.0L && y < 1.0L)) abort (); y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); lo = (int) y; y -= lo; if (!(y >= 0.0L && y < 1.0L)) abort (); m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo; }# else { mp_limb_t d; y *= (mp_limb_t) 1 << (LDBL_MANT_BIT % GMP_LIMB_BITS); d = (int) y; y -= d; if (!(y >= 0.0L && y < 1.0L)) abort (); m.limbs[LDBL_MANT_BIT / GMP_LIMB_BITS] = d; }# endif# endif for (i = LDBL_MANT_BIT / GMP_LIMB_BITS; i > 0; ) { mp_limb_t hi, lo; y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); hi = (int) y; y -= hi; if (!(y >= 0.0L && y < 1.0L)) abort (); y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); lo = (int) y; y -= lo; if (!(y >= 0.0L && y < 1.0L)) abort (); m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo; }#if 0 /* On FreeBSD 6.1/x86, 'long double' numbers sometimes have excess precision. */ if (!(y == 0.0L)) abort ();#endif /* Normalise. */ while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0) m.nlimbs--; *mp = m; *ep = exp - LDBL_MANT_BIT; return m.limbs;}# endif# if NEED_PRINTF_DOUBLE/* Assuming x is finite and >= 0: write x as x = 2^e * m, where m is a bignum. Return the allocated memory in case of success, NULL in case of memory allocation failure. */static void *decode_double (double x, int *ep, mpn_t *mp){ mpn_t m; int exp; double y; size_t i; /* Allocate memory for result. */ m.nlimbs = (DBL_MANT_BIT + GMP_LIMB_BITS - 1) / GMP_LIMB_BITS; m.limbs = (mp_limb_t *) malloc (m.nlimbs * sizeof (mp_limb_t)); if (m.limbs == NULL) return NULL; /* Split into exponential part and mantissa. */ y = frexp (x, &exp); if (!(y >= 0.0 && y < 1.0)) abort (); /* x = 2^exp * y = 2^(exp - DBL_MANT_BIT) * (y * DBL_MANT_BIT), and the latter is an integer. */ /* Convert the mantissa (y * DBL_MANT_BIT) to a sequence of limbs. I'm not sure whether it's safe to cast a 'double' value between 2^31 and 2^32 to 'unsigned int', therefore play safe and cast only 'double' values between 0 and 2^16 (to 'unsigned int' or 'int', doesn't matter). */# if (DBL_MANT_BIT % GMP_LIMB_BITS) != 0# if (DBL_MANT_BIT % GMP_LIMB_BITS) > GMP_LIMB_BITS / 2 { mp_limb_t hi, lo; y *= (mp_limb_t) 1 << (DBL_MANT_BIT % (GMP_LIMB_BITS / 2)); hi = (int) y; y -= hi; if (!(y >= 0.0 && y < 1.0)) abort (); y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); lo = (int) y; y -= lo; if (!(y >= 0.0 && y < 1.0)) abort (); m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = (hi << (GMP_LIMB_BITS / 2)) | lo; }# else { mp_limb_t d; y *= (mp_limb_t) 1 << (DBL_MANT_BIT % GMP_LIMB_BITS); d = (int) y; y -= d; if (!(y >= 0.0 && y < 1.0)) abort (); m.limbs[DBL_MANT_BIT / GMP_LIMB_BITS] = d; }# endif# endif for (i = DBL_MANT_BIT / GMP_LIMB_BITS; i > 0; ) { mp_limb_t hi, lo; y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); hi = (int) y; y -= hi; if (!(y >= 0.0 && y < 1.0)) abort (); y *= (mp_limb_t) 1 << (GMP_LIMB_BITS / 2); lo = (int) y; y -= lo; if (!(y >= 0.0 && y < 1.0)) abort (); m.limbs[--i] = (hi << (GMP_LIMB_BITS / 2)) | lo; } if (!(y == 0.0)) abort (); /* Normalise. */ while (m.nlimbs > 0 && m.limbs[m.nlimbs - 1] == 0) m.nlimbs--; *mp = m; *ep = exp - DBL_MANT_BIT; return m.limbs;}# endif/* Assuming x = 2^e * m is finite and >= 0, and n is an integer: Returns the decimal representation of round (x * 10^n). Return the allocated memory - containing the decimal digits in low-to-high order, terminated with a NUL character - in case of success, NULL in case of memory allocation failure. */static char *scale10_round_decimal_decoded (int e, mpn_t m, void *memory, int n){ int s; size_t extra_zeroes; unsigned int abs_n; unsigned int abs_s; mp_limb_t *pow5_ptr; size_t pow5_len; unsigned int s_limbs; unsigned int s_bits; mpn_t pow5; mpn_t z; void *z_memory; char *digits; if (memory == NULL) return NULL; /* x = 2^e * m, hence y = round (2^e * 10^n * m) = round (2^(e+n) * 5^n * m) = round (2^s * 5^n * m). */ s = e + n; extra_zeroes = 0; /* Factor out a common power of 10 if possible. */ if (s > 0 && n > 0) { extra_zeroes = (s < n ? s : n); s -= extra_zeroes; n -= extra_zeroes; } /* Here y = round (2^s * 5^n * m) * 10^extra_zeroes. Before converting to decimal, we need to compute z = round (2^s * 5^n * m). */ /* Compute 5^|n|, possibly shifted by |s| bits if n and s have the same sign. 2.322 is slightly larger than log(5)/log(2). */ abs_n = (n >= 0 ? n : -n); abs_s = (s >= 0 ? s : -s); pow5_ptr = (mp_limb_t *) malloc (((int)(abs_n * (2.322f / GMP_LIMB_BITS)) + 1 + abs_s / GMP_LIMB_BITS + 1)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -