📄 compute_lagrange_points_family.auto
字号:
# This script computes the initial circle of solutions for mu=0# as well as the bifurcating branches which give us the# Lagrange points. It then plots the full bifurcation diagram.# Load 3d.c and c.3d into the AUTO CLUIload('3d')# Add a stopping condition so we only compute the loop once# We tell AUTO to stop when parameter 16 is 0.991, parameter 1 is -0.1,# or parameter 1 is 1.1. If parameter1 is 0.5 we just report# a point.cc('UZR',[[-16,0.991], [-1,-0.1], [1,0.5], [-1,1.1]])# We also want to compute branches for the first 4 bifurcation# points.cc('MXBF',-4)# IPS=0 tells AUTO to compute a family of equilibria.cc('IPS',0)# Compute the circle.run()# Save the data in b.lagrange_points, s.lagrange_points,# and d.lagrange_points. sv('lagrange_points')# Load the save solution back into the AUTO CLUIload(s='lagrange_points')# This command parses the solution file s.lagrange_points and returns# a Python object which contains all of the data in the# file in an easy to use format.data=sl('lagrange_points')# Find the label of the last solution of the previous calculation# and use this solution as the starting point of the next# calculation.cc('IRS',data[-1]["Label"])# Do not compute any bifurcating branches.cc('MXBF',0)# We tell AUTO to stop when parameter 16 is 1.0, parameter 1 is -0.1,# or parameter 1 is 1.1. If parameter1 is 0.5 we just report# a point.cc('UZR',[[-16,1.0], [-1,-0.1], [1,0.5], [-1,1.1]])# Run the calculationrun()# Append the newly computed data to the appropriate# lagrange_points files.ap('lagrange_points')# Plot the solutionsp3('lagrange_points')# Wait for the user to press a key before the script quits.wait()
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -