⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 最新程序.cpp

📁 常用的BP神经网络算法,用c++实现的,相信对大家有用
💻 CPP
字号:
//---------------------------------------------------------------------------   
    
  #pragma   hdrstop   
  #include<stdlib.h> 
  #include<stdio.h>   
  #include<iostream.h>   
  #include<math.h> 
  #include<time.h>
  const   A=30.0;   
  const   B=10.0;   
  const   MAX=500;               //最大训练次数   
  const   COEF=0.035;   //网络的学习效率   
  const   BCOEF=0.001;//网络的阀值调整效率   
  const   ERROR=0.002;   //   网络训练中的允许误差   
  const   ACCURACY=0.0005;//网络要求精度   
  double   sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},   
                                                          {5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},   
                                                          {5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},   
                                                          {5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},   
                                                          {5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},   
                                                          {5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},   
                                                          {5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},   
                                                          {1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},   
                                                          {1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},   
                                                          {1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},   
                                                          {1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},   
                                                          {1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},   
                                                          {1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},   
                                                          {1,3,2,7.219},{1,5,3,5.724}};   
    
    
  double   w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];   
  double   o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差   
  double   is;   //全体样本均方差   
  int   count,a;   
    
  void   netout(int   m,   int   n);//计算网络隐含层和输出层的输出   
  void   calculd(int   m,int   n);   //计算网络的反向传播误差   
  void   calcalwc(int   m,int   n);//计算网络权值的调整量   
  void   calcaulbc(int   m,int   n);   //计算网络阀值的调整量   
  void   changew(int   m,int   n);   //调整网络权值   
  void   changeb(int   m,int   n);//调整网络阀值   
  void   clearwc(int   m,int   n);//清除网络权值变化量wc   
  void   clearbc(int   m,int   n);//清除网络阀值变化量bc   
  void   initialw(void);//初始化NN网络权值W   
  void   initialb(void);   //初始化NN网络阀值   
  void   calculdiffer(void);//计算NN网络单个样本误差   
  void   calculis(void);//计算NN网络全体样本误差   
  void   trainNN(void);//训练NN网络   
    
    
  /*计算NN网络隐含层和输出层的输出   */   
  void   netout(int   m,int   n)   
  {   
      int   i,j,k;   
    
      //隐含层各节点的的输出   
      for   (j=1,i=2;j<=m;j++)   //m为隐含层节点个数   
      {   
          netin[i][j]=0.0;   
          for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量   
              netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];   
          netin[i][j]=netin[i][j]-b[i][j];   
        o[i][j]=A/(1+exp(-netin[i][j]/B));   
      }   
    
      //输出层各节点的输出   
      for   (j=1,i=3;j<=n;j++)   
      {   
          netin[i][j]=0.0;   
          for   (k=1;k<=m;k++)   
              netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];   
          netin[i][j]=netin[i][j]-b[i][j];   
          o[i][j]=A/(1+exp(-netin[i][j]/B))   ;   
      }   
  }   
    
    
  /*计算NN网络的反向传播误差*/   
  void   calculd(int   m,int   n)   
  {   
        int   i,j,k;   
        double   t;   
        a=count-1;   
      d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);   
    
        //隐含层的误差   
        for   (j=1,i=2;j<=m;j++)   
        {   
            t=0.00;   
            for   (k=1;k<=n;k++)   
                t=t+w[i+1][j][k]*d[i+1][k];   
                  d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);   
        }   
  }   
    
    
  /*计算网络权值W的调整量*/   
  void   calculwc(int   m,int   n)   
  {   
      int   i,j,k;   
    
    //   输出层(第三层)与隐含层(第二层)之间的连接权值的调整   
      for   (i=1,k=3;i<=m;i++)   
      {   
          for   (j=1;j<=n;j++)   
          {   
              wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];   
          }   
        //   printf("\n");   
      }   
      //隐含层与输入层之间的连接权值的调整   
      for   (i=1,k=2;i<=m;i++)   
      {   
          for   (j=1;j<=m;j++)   
          {   
              wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];   
          }   
      //     printf("\n");   
      }   
    
  }   
    
  /*计算网络阀值的调整量*/   
  void   calculbc(int   m,int   n)   
  {   
      int   j;   
      for   (j=1;j<=m;j++)   
      {   
          bc[2][j]=BCOEF*d[2][j];   
      }   
      for   (j=1;j<=n;j++)   
      {   
          bc[3][j]=BCOEF*d[3][j];   
      }   
  }   
    
  /*调整网络权值*/   
  void   changw(int   m,int   n)   
  {   
      int   i,j;   
      for   (i=1;i<=3;i++)   
          for   (j=1;j<=m;j++)   
          {   
              w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];   
              //为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9   
              printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);   
          }   
      for   (i=1;i<=m;i++)   
          for   (j=1;j<=n;j++)   
          {   
              w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];   
              printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);   
          }   
  }   
    
  /*调整网络阀值*/   
  void   changb(int   m,int   n)   
  {   
      int   j;   
      for   (j=1;j<=m;j++)   
          b[2][j]=b[2][j]+bc[2][j];   
    
      for   (j=1;j<=n;j++)   
          b[3][j]=b[3][j]+bc[3][j];   
  }   
    
  /*清除网络权值变化量wc*/   
  void   clearwc(void)   
  {   
      for   (int   i=0;i<4;i++)   
          for   (int   j=0;j<10;j++)   
              for   (int   k=0;k<10;k++)   
                  wc[i][j][k]=0.00;   
  }   
    
  /*清除网络阀值变化量*/   
  void   clearbc(void)   
  {   
      for   (int   i=0;i<4;i++)   
          for   (int   j=0;j<10;j++)   
              bc[i][j]=0.00;   
  }   
    
  /*初始化网络权值W*/   
  void   initialw(void)   
  {   
      int   i,j,k,x;   
      double   weight;   
      for   (i=0;i<4;i++)   
          for   (j=0;j<10;j++)   
              for   (k=0;k<10;k++)   
              {   
                  srand(time(NULL));   
                  x=rand()%500;  
                  weight=(double)x/5000.00;   
                  w[i][j][k]=weight;   
              }   
  }   
    
    
  /*初始化网络阀值*/   
  void   initialb(void)   
  {   
      int   i,j,x;   
      double   fazhi;   
      for   (i=0;i<4;i++)   
        for   (j=0;j<10;j++)   
        {   
             srand(time(NULL));   
            for   (int   k=0;k<12;k++)   
            {   
                x=rand()%500;  
            }   
            fazhi=(double)x/5000.00;   
            b[i][j]=fazhi;   
        }   
  }   
    
  /*计算网络单个样本误差*/   
  void   calculdiffer(void)   
  {   
      a=count-1;   
      differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);   
  }   
    
  void   calculis(void)   
  {   
      int   i;   
      is=0.0;   
      for   (i=0;i<=19;i++)   
      {   
          o[1][1]=sample[i][0];   
          o[1][2]=sample[i][1];   
          o[1][3]=sample[i][2];   
          netout(8,1);   
          is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);   
      }   
      is=is/20;   
  }   
    
  /*训练网络*/   
  void   trainNN(void)   
  {   
      long   int   time;   
      int   i,x[4];   
      initialw();   
      initialb();   
    
      for   (time=1;time<=MAX;time++)   
      {   
          count=0;   
          while(count<=40)   
          {   
              o[1][1]=sample[count][0];   
              o[1][2]=sample[count][1];   
              o[1][3]=sample[count][2];   
    
              count=count+1;   
              clearwc();   
              clearbc();   
              netout(8,1);   
              calculdiffer();   
              while(differ>ERROR)   
              {   
                  calculd(8,1);   
                  calculwc(8,1);   
                  calculbc(8,1);   
                  changw(8,1);   
                  changb(8,1);   
                  netout(8,1);   
                  calculdiffer();   
              }   
          }   
          printf("This   is   %d   times   training   NN...\n",time);   
          calculis();   
          printf("is==%f\n",is);   
          if   (is<ACCURACY)   break;   
      }   
  }   
    
    
    
    
    
    
    
    
    
    
  //---------------------------------------------------------------------------   
    
  #pragma   argsused   
  int   main(int   argc,   char*   argv[])   
  {   
      double   result;   
      int   m,test[4];   
      char   ch='y';   
      cout<<"Please   wait   for   the   train   of   NN:"<<endl;   
      trainNN();   
      cout<<"Now,this   modular   network   can   work   for   you."<<endl;   
    
      while(ch=='y'   ||   ch=='Y')   
      {   
        cout<<"Please   input   data   to   be   tested."<<endl;   
          for   (m=1;m<=3;m++)   
          cin>>test[m];   
          ch=getchar();   
          o[1][1]=test[1];   
          o[1][2]=test[2];   
          o[1][3]=test[3];   
          netout(8,1);   
          result=o[3][1];   
          printf("Final   result   is   %f.\n",result);   
          printf("Still   test?[Yes]   or   [No]\n");   
          ch=getchar();   
      }   
    
    
                  return   0;   
  }   
  //---------------------------------------------------------------------------   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -