⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hexobj.geo

📁 matlab有限元分析工具,比经较全面的一个手册,请大家下载呀
💻 GEO
字号:
brep_v2.0 3 3()(1 0 -0.29999999999999999 # cp 01.0000000000000002 0.3568220897730896 -0.29999999999999999 # cp 10.80901699437494801 0.68761435889789313 -0.29999999999999999 # cp 20.50000000000000089 0.86602540378443815 -0.29999999999999999 # cp 30.19098300562505391 1.0444364486709834 -0.29999999999999999 # cp 4-0.19098300562505077 1.0444364486709841 -0.29999999999999999 # cp 5-0.49999999999999828 0.86602540378443971 -0.29999999999999999 # cp 6-0.80901699437494579 0.68761435889789557 -0.29999999999999999 # cp 7-0.99999999999999911 0.35682208977309243 -0.29999999999999999 # cp 8-1 2.7869999390151108e-15 -0.29999999999999999 # cp 9-1.0000000000000011 -0.35682208977308688 -0.29999999999999999 # cp 10-0.80901699437495012 -0.68761435889789069 -0.29999999999999999 # cp 11-0.50000000000000344 -0.8660254037844366 -0.29999999999999999 # cp 12-0.19098300562505705 -1.0444364486709827 -0.29999999999999999 # cp 130.19098300562504739 -1.0444364486709845 -0.29999999999999999 # cp 140.49999999999999545 -0.86602540378444126 -0.29999999999999999 # cp 150.80901699437494368 -0.68761435889789813 -0.29999999999999999 # cp 160.99999999999999778 -0.35682208977309615 -0.29999999999999999 # cp 171 0 0.29999999999999999 # cp 181.0000000000000002 0.3568220897730896 0.29999999999999999 # cp 190.80901699437494801 0.68761435889789313 0.29999999999999999 # cp 200.50000000000000089 0.86602540378443815 0.29999999999999999 # cp 210.19098300562505391 1.0444364486709834 0.29999999999999999 # cp 22-0.19098300562505077 1.0444364486709841 0.29999999999999999 # cp 23-0.49999999999999828 0.86602540378443971 0.29999999999999999 # cp 24-0.80901699437494579 0.68761435889789557 0.29999999999999999 # cp 25-0.99999999999999911 0.35682208977309243 0.29999999999999999 # cp 26-1 2.7869999390151108e-15 0.29999999999999999 # cp 27-1.0000000000000011 -0.35682208977308688 0.29999999999999999 # cp 28-0.80901699437495012 -0.68761435889789069 0.29999999999999999 # cp 29-0.50000000000000344 -0.8660254037844366 0.29999999999999999 # cp 30-0.19098300562505705 -1.0444364486709827 0.29999999999999999 # cp 310.19098300562504739 -1.0444364486709845 0.29999999999999999 # cp 320.49999999999999545 -0.86602540378444126 0.29999999999999999 # cp 330.80901699437494368 -0.68761435889789813 0.29999999999999999 # cp 340.99999999999999778 -0.35682208977309615 0.29999999999999999 # cp 351.7 0 -0.29999999999999999 # cp 361.4166666666666672 0.49074772881118162 -0.29999999999999999 # cp 371.1333333333333342 0.98149545762236323 -0.29999999999999999 # cp 380.85000000000000153 1.4722431864335448 -0.29999999999999999 # cp 390.28333333333333532 1.4722431864335457 -0.29999999999999999 # cp 40-0.28333333333333083 1.4722431864335466 -0.29999999999999999 # cp 41-0.84999999999999709 1.4722431864335475 -0.29999999999999999 # cp 42-1.1333333333333313 0.98149545762236678 -0.29999999999999999 # cp 43-1.4166666666666656 0.49074772881118617 -0.29999999999999999 # cp 44-1.7 5.4928515530707947e-15 -0.29999999999999999 # cp 45-1.4166666666666685 -0.49074772881117706 -0.29999999999999999 # cp 46-1.1333333333333373 -0.98149545762235968 -0.29999999999999999 # cp 47-0.85000000000000586 -1.4722431864335421 -0.29999999999999999 # cp 48-0.28333333333333977 -1.4722431864335448 -0.29999999999999999 # cp 490.28333333333332628 -1.4722431864335475 -0.29999999999999999 # cp 500.84999999999999221 -1.4722431864335501 -0.29999999999999999 # cp 511.1333333333333282 -0.98149545762237045 -0.29999999999999999 # cp 521.4166666666666641 -0.49074772881119072 -0.29999999999999999 # cp 531.7 0 0.29999999999999999 # cp 541.4166666666666672 0.49074772881118162 0.29999999999999999 # cp 551.1333333333333342 0.98149545762236323 0.29999999999999999 # cp 560.85000000000000153 1.4722431864335448 0.29999999999999999 # cp 570.28333333333333532 1.4722431864335457 0.29999999999999999 # cp 58-0.28333333333333083 1.4722431864335466 0.29999999999999999 # cp 59-0.84999999999999709 1.4722431864335475 0.29999999999999999 # cp 60-1.1333333333333313 0.98149545762236678 0.29999999999999999 # cp 61-1.4166666666666656 0.49074772881118617 0.29999999999999999 # cp 62-1.7 5.4928515530707947e-15 0.29999999999999999 # cp 63-1.4166666666666685 -0.49074772881117706 0.29999999999999999 # cp 64-1.1333333333333373 -0.98149545762235968 0.29999999999999999 # cp 65-0.85000000000000586 -1.4722431864335421 0.29999999999999999 # cp 66-0.28333333333333977 -1.4722431864335448 0.29999999999999999 # cp 670.28333333333332628 -1.4722431864335475 0.29999999999999999 # cp 680.84999999999999221 -1.4722431864335501 0.29999999999999999 # cp 691.1333333333333282 -0.98149545762237045 0.29999999999999999 # cp 701.4166666666666641 -0.49074772881119072 0.29999999999999999 # cp 71-1.3 0 0 # cp 72-1.1000000000000001 0.050000000000000003 0 # cp 73-1.23 0.17000000000000001 0.050000000000000003 # cp 74) (   # begin topological verticesvbottom0  ()  () ()  ( (vertex 36 ) )vbottom1  ()  () ()  ( (vertex 39 ) )vbottom2  ()  () ()  ( (vertex 42 ) )vbottom3  ()  () ()  ( (vertex 45 ) )vbottom4  ()  () ()  ( (vertex 48 ) )vbottom5  ()  () ()  ( (vertex 51 ) )vtop0  ()  () ()  ( (vertex 54 ) )vtop1  ()  () ()  ( (vertex 57 ) )vtop2  ()  () ()  ( (vertex 60 ) )vtop3  ()  () ()  ( (vertex 63 ) )vtop4  ()  () ()  ( (vertex 66 ) )vtop5  ()  () ()  ( (vertex 69 ) )vcrk0  ()  () ()  ( (vertex 72 ) )vcrk1  ()  () ()  ( (vertex 73 ) )vcrk2  ()  () ()  ( (vertex 74 ) ) ) # end topological vertices(   # begin topological edgesebottom0  ()  (vbottom0 vbottom1 ) ()  ( (bezier_curve 1 36 39 ) )ebottom1  ()  (vbottom1 vbottom2 ) ()  ( (bezier_curve 1 39 42 ) )ebottom2  ()  (vbottom2 vbottom3 ) ()  ( (bezier_curve 1 42 45 ) )ebottom3  ()  (vbottom3 vbottom4 ) ()  ( (bezier_curve 1 45 48 ) )ebottom4  ()  (vbottom4 vbottom5 ) ()  ( (bezier_curve 1 48 51 ) )ebottom5  ()  (vbottom5 vbottom0 ) ()  ( (bezier_curve 1 51 36 ) )etop0  ()  (vtop0 vtop1 ) ()  ( (bezier_curve 1 54 57 ) )etop1  ()  (vtop1 vtop2 ) ()  ( (bezier_curve 1 57 60 ) )etop2  ()  (vtop2 vtop3 ) ()  ( (bezier_curve 1 60 63 ) )etop3  ()  (vtop3 vtop4 ) ()  ( (bezier_curve 1 63 66 ) )etop4  ()  (vtop4 vtop5 ) ()  ( (bezier_curve 1 66 69 ) )etop5  ()  (vtop5 vtop0 ) ()  ( (bezier_curve 1 69 54 ) )eside0  ()  (vbottom0 vtop0 ) ()  ( (bezier_curve 1 36 54 ) )eside1  ()  (vbottom1 vtop1 ) ()  ( (bezier_curve 1 39 57 ) )eside2  ()  (vbottom2 vtop2 ) ()  ( (bezier_curve 1 42 60 ) )eside3  ()  (vbottom3 vtop3 ) ()  ( (bezier_curve 1 45 63 ) )eside4  ()  (vbottom4 vtop4 ) ()  ( (bezier_curve 1 48 66 ) )eside5  ()  (vbottom5 vtop5 ) ()  ( (bezier_curve 1 51 69 ) )ebottomcirc  ()  () ()  ( (bezier_curve 3 0 1 2 3 )    (bezier_curve 3 3 4 5 6 )    (bezier_curve 3 6 7 8 9 )    (bezier_curve 3 9 10 11 12 )    (bezier_curve 3 12 13 14 15 )    (bezier_curve 3 15 16 17 0 ) )etopcirc  ()  () ()  ( (bezier_curve 3 18 19 20 21 )    (bezier_curve 3 21 22 23 24 )    (bezier_curve 3 24 25 26 27 )    (bezier_curve 3 27 28 29 30 )    (bezier_curve 3 30 31 32 33 )    (bezier_curve 3 33 34 35 18 ) )ecrk0  ()  (vcrk0 vcrk1 ) ()  ( (bezier_curve 1 72 73 ) )ecrk1  ()  (vcrk1 vcrk2 ) ()  ( (bezier_curve 1 73 74 ) )ecrk2  ()  (vcrk2 vcrk0 ) ()  ( (bezier_curve 1 74 72 ) ) ) # end topological edges(   # begin topological surfacess_bottom  ( color (0.5 0.0 0.0 1))  (ebottomcirc ebottom0 ebottom1 ebottom2 ebottom3 ebottom4 ebottom5 ) ()  ( (bezier_quad 3 1 36 37 38 39 0 1 2 3 )    (bezier_quad 3 1 39 40 41 42 3 4 5 6 )    (bezier_quad 3 1 42 43 44 45 6 7 8 9 )    (bezier_quad 3 1 45 46 47 48 9 10 11 12 )    (bezier_quad 3 1 48 49 50 51 12 13 14 15 )    (bezier_quad 3 1 51 52 53 36 15 16 17 0 ) )s_top  ( color (1.0 0.0 0.0 1))  (etopcirc etop0 etop1 etop2 etop3 etop4 etop5 ) ()  ( (bezier_quad 3 1 54 55 56 57 18 19 20 21 )    (bezier_quad 3 1 57 58 59 60 21 22 23 24 )    (bezier_quad 3 1 60 61 62 63 24 25 26 27 )    (bezier_quad 3 1 63 64 65 66 27 28 29 30 )    (bezier_quad 3 1 66 67 68 69 30 31 32 33 )    (bezier_quad 3 1 69 70 71 54 33 34 35 18 ) )s_inner  ( color (0.0 0.5 0.0 1))  (ebottomcirc etopcirc ) ()  ( (bezier_quad 3 1 0 1 2 3 18 19 20 21 )    (bezier_quad 3 1 3 4 5 6 21 22 23 24 )    (bezier_quad 3 1 6 7 8 9 24 25 26 27 )    (bezier_quad 3 1 9 10 11 12 27 28 29 30 )    (bezier_quad 3 1 12 13 14 15 30 31 32 33 )    (bezier_quad 3 1 15 16 17 0 33 34 35 18 ) )s_outer0  ( color (0.5 0.5 0.0 1))  (ebottom0 etop0 eside0 eside1 ) ()  ( (bezier_quad 1 1 36 39 54 57 ) )s_outer1  ( color (1.0 0.5 0.0 1))  (ebottom1 etop1 eside1 eside2 ) ()  ( (bezier_quad 1 1 39 42 57 60 ) )s_outer2  ( color (0.0 1.0 0.0 1))  (ebottom2 etop2 eside2 eside3 ) ()  ( (bezier_quad 1 1 42 45 60 63 ) )s_outer3  ( color (0.5 1.0 0.0 1))  (ebottom3 etop3 eside3 eside4 ) ()  ( (bezier_quad 1 1 45 48 63 66 ) )s_outer4  ( color (1.0 1.0 0.0 1))  (ebottom4 etop4 eside4 eside5 ) ()  ( (bezier_quad 1 1 48 51 66 69 ) )s_outer5  ( color (0.0 0.0 0.5 1))  (ebottom5 etop5 eside5 eside0 ) ()  ( (bezier_quad 1 1 51 36 69 54 ) )crack  ( color (0.5 0.0 0.5 1))  (ecrk0 ecrk1 ecrk2 ) ()  ( (bezier_triangle 1 72 73 74 ) ) ) # end topological surfaces(   # begin topological regionshexnutcrack  ()  (s_bottom s_top s_inner s_outer0 s_outer1 s_outer2 s_outer3 s_outer4 s_outer5 crack crack ) ()  ( ) ) # end topological regions

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -