📄 fft2.cpp
字号:
#include <math.h>
#include <malloc.h>
#include <string.h>
#define pi 3.14159265359
/*复数定义*/
typedef struct
{
double re;
double im;
}COMPLEX;
/*复数加法运算*/
COMPLEX Add(COMPLEX c1, COMPLEX c2)
{
COMPLEX c;
c.re=c1.re+c2.re;
c.im=c1.im+c2.im;
return c;
}
/*复数减法运算*/
COMPLEX Sub(COMPLEX c1, COMPLEX c2)
{
COMPLEX c;
c.re=c1.re-c2.re;
c.im=c1.im-c2.im;
return c;
}
/*复数乘运算*/
COMPLEX Mul(COMPLEX c1, COMPLEX c2)
{
COMPLEX c;
c.re=c1.re*c2.re-c1.im*c2.im;
c.im=c1.re*c2.im+c2.re*c1.im;
return c;
}
//DIF_FFT
//TD为时域值,FD为频域值,power为2的幂数
void FFT(COMPLEX *TD, COMPLEX *FD, int power)
{
int count;
int i,j,k,bfsize,p;
double angle;
COMPLEX *W, *X1, *X2, *X;
/*计算傅立叶变换点数*/
count=1<<power;
/*分配运算所需存储器*/
W =(COMPLEX *)malloc(sizeof(COMPLEX) * count/2);
X1=(COMPLEX *)malloc(sizeof(COMPLEX) * count);
X2=(COMPLEX *)malloc(sizeof(COMPLEX) * count);
/*计算加权系数*/
for(i=0;i<count/2;i++)
{
angle=-i*pi*2/count;
W[i].re=cos(angle);
W[i].im=sin(angle);
}
/*将时域点写入存储器*/
memcpy(X1,TD,sizeof(COMPLEX)*count);
/*蝶形运算*/
for(k=0;k<power;k++)
{
for(j=0;j<1<<k;j++)
{
bfsize=1<<(power-k);
for(i=0;i<bfsize/2;i++)
{
p=j*bfsize;
X2[i+p]=Add(X1[i+p],X1[i+p+bfsize/2]);
X2[i+p+bfsize/2]=Mul(Sub(X1[i+p],X1[i+p+bfsize/2]),W[i*(1<<k)]);
}
}
X=X1;
X1=X2;
X2=X;
}
/*重新排序*/
for(j=0;j<count;j++)
{
p=0;
for(i=0;i<power;i++)
{
if(j&(1<<i)) p+=1<<(power-i-1);
}
FD[j]=X1[p];
}
/*释放存储器*/
free(W);
free(X1);
free(X2);
}
/*快速傅立叶反变换,利用快速傅立叶变换
FD为频域值,TD为时域值,power为2的幂数*/
void IFFT(COMPLEX *FD, COMPLEX *TD, int power)
{
int i, count;
COMPLEX *x;
/*计算傅立叶反变换点数*/
count=1<<power;
/*分配运算所需存储器*/
x=(COMPLEX *)malloc(sizeof(COMPLEX)*count);
/*将频域点写入存储器*/
memcpy(x,FD,sizeof(COMPLEX)*count);
/*求频域点的共轭*/
for(i=0;i<count;i++)
{
x[i].im=-x[i].im;
}
/*调用快速傅立叶变换*/
FFT(x,TD,power);
/*求时域点的共轭*/
for(i=0;i<count;i++)
{
TD[i].re/=count;
TD[i].im=-TD[i].im/count;
}
/*释放存储器*/
free(x);
}
//分裂基FFT的递归算法
void L_Atom(double* real,double* imag,int size)
{
int i,j,half,half2;
double xa,xb,xc;
half = size/2;
half2 = half/2;
for(i = 0;i < half;i++)
{
xa = real[i];
xb = imag[i];
real[i] += real[half + i];
imag[i] += imag[half + i];
real[half + i] = xa - real[half + i];
imag[half + i] = xb - imag[half + i];
}
if(size > 2)
{
for(i = 0,j = half;i < half2;i++,j++)
{
xa = real[j];
xb = imag[j];
real[j] += imag[j + half2];
imag[j] -= real[j + half2];
xc = real[j];
real[j] = xc * cos(i * pi/half) + imag[j] * sin(i * pi/half);
imag[j] = imag[j] * cos(i * pi/half) - xc * sin(i * pi/half);
xc = real[j + half2];
real[j + half2] = xa - imag[j + half2];
imag[j + half2] = xb + xc;
xc = real[j + half2];
real[j + half2] = xc * cos(3 * i * pi/half) + imag[j + half2] * sin(3 * i * pi/half);
imag[j + half2] = imag[j + half2] * cos(3 * i * pi/half) - xc * sin(3 * i * pi/half);
}
if(size > 4)
{
L_Atom(real + half,imag + half,size/4);
L_Atom(real + half + half2,imag + half + half2,size/4);
}
L_Atom(real,imag,size/2);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -