⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xutil_memtest.c

📁 自学ZedBoard:使用IP通过ARM PS访问FPGA(源代码)
💻 C
📖 第 1 页 / 共 2 页
字号:
				/*				 * Restore the reference 'Val' to the				 * initial value				 */				Val = ~(1 << j);				/* Read the values from each location that was written */				for (i = 0L; i < 16; i++) {					/* read memory location */					Word = Addr[i];					if (Word != Val) {						return XST_MEMTEST_FAILED;					}					Val = ~((u16) RotateLeft(~Val, 16));				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 3 */		/* fall through case statement */	case XUT_INVERSEADDR:		{			/* Fill the memory with inverse of address */			for (i = 0L; i < Words; i++) {				/* write memory location */				Val = (u16) (~((u32) (&Addr[i])));				Addr[i] = Val;			}			/*			 * Check every word within the Words			 * of tested memory			 */			for (i = 0L; i < Words; i++) {				/* read memory location */				Word = Addr[i];				Val = (u16) (~((u32) (&Addr[i])));				if ((Word ^ Val) != 0x0000) {					return XST_MEMTEST_FAILED;				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 4 */		/* fall through case statement */	case XUT_FIXEDPATTERN:		{			/*			 * Generate an initial value for			 * memory testing			 */			if (Pattern == 0) {				Val = 0xDEAD;			}			else {				Val = Pattern;			}			/*			 * Fill the memory with fixed pattern			 */			for (i = 0L; i < Words; i++) {				/* write memory location */				Addr[i] = Val;			}			/*			 * Check every word within the Words			 * of tested memory and compare it			 * with the fixed pattern			 */			for (i = 0L; i < Words; i++) {				/* read memory location */				Word = Addr[i];				if (Word != Val) {					return XST_MEMTEST_FAILED;				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 5 */		/* this break is for the prior fall through case statements */		break;	default:		{			return XST_MEMTEST_FAILED;		}	}			/* end of switch */	/* Successfully passed memory test ! */	return XST_SUCCESS;}/*****************************************************************************//**** Performs a destructive 8-bit wide memory test.** @param    Addr is a pointer to the region of memory to be tested.* @param    Words is the length of the block.* @param    Pattern is the constant used for the constant pattern test, if 0,*           0xDEADBEEF is used.* @param    Subtest is the test selected. See xutil.h for possible values.** @return** - XST_MEMTEST_FAILED is returned for a failure* - XST_SUCCESS is returned for a pass** @note** Used for spaces where the address range of the region is smaller than* the data width. If the memory range is greater than 2 ** width,* the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a* boundry of a power of two making it more difficult to detect addressing* errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same* problem. Ideally, if large blocks of memory are to be tested, break* them up into smaller regions of memory to allow the test patterns used* not to repeat over the region tested.******************************************************************************/int XUtil_MemoryTest8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest){	u32 i;	u32 j;	u8 Val = XUT_MEMTEST_INIT_VALUE;	u8 FirstVal = XUT_MEMTEST_INIT_VALUE;	u8 Word;	XASSERT_NONVOID(Words != 0);	XASSERT_NONVOID(Subtest <= XUT_MAXTEST);	/*	 * select the proper Subtest(s)	 */	switch (Subtest) {	case XUT_ALLMEMTESTS:		/* this case executes all of the Subtests */		/* fall through case statement */	case XUT_INCREMENT:		{			/*			 * Fill the memory with incrementing			 * values starting from 'FirstVal'			 */			for (i = 0L; i < Words; i++) {				/* write memory location */				Addr[i] = Val;				Val++;			}			/*			 * Restore the reference 'Val' to the			 * initial value			 */			Val = FirstVal;			/*			 * Check every word within the Words			 * of tested memory and compare it			 * with the incrementing reference			 * Val			 */			for (i = 0L; i < Words; i++) {				/* read memory location */				Word = Addr[i];				if (Word != Val) {					return XST_MEMTEST_FAILED;				}				Val++;			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 1 */		/* fall through case statement */	case XUT_WALKONES:		{			/*			 * set up to cycle through all possible initial			 * test Patterns for walking ones test			 */			for (j = 0L; j < 8; j++) {				/*				 * Generate an initial value for walking ones test to test				 * for bad data bits				 */				Val = 1 << j;				/*				 * START walking ones test				 * Write a one to each data bit indifferent locations				 */				for (i = 0L; i < 8; i++) {					/* write memory location */					Addr[i] = Val;					Val = (u8) RotateLeft(Val, 8);				}				/*				 * Restore the reference 'Val' to the				 * initial value				 */				Val = 1 << j;				/* Read the values from each location that was written */				for (i = 0L; i < 8; i++) {					/* read memory location */					Word = Addr[i];					if (Word != Val) {						return XST_MEMTEST_FAILED;					}					Val = (u8) RotateLeft(Val, 8);				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 2 */		/* fall through case statement */	case XUT_WALKZEROS:		{			/*			 * set up to cycle through all possible initial test			 * Patterns for walking zeros test			 */			for (j = 0L; j < 8; j++) {				/*				 * Generate an initial value for walking ones test to test				 * for bad data bits				 */				Val = ~(1 << j);				/*				 * START walking zeros test				 * Write a one to each data bit indifferent locations				 */				for (i = 0L; i < 8; i++) {					/* write memory location */					Addr[i] = Val;					Val = ~((u8) RotateLeft(~Val, 8));				}				/*				 * Restore the reference 'Val' to the				 * initial value				 */				Val = ~(1 << j);				/* Read the values from each location that was written */				for (i = 0L; i < 8; i++) {					/* read memory location */					Word = Addr[i];					if (Word != Val) {						return XST_MEMTEST_FAILED;					}					Val = ~((u8) RotateLeft(~Val, 8));				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 3 */		/* fall through case statement */	case XUT_INVERSEADDR:		{			/* Fill the memory with inverse of address */			for (i = 0L; i < Words; i++) {				/* write memory location */				Val = (u8) (~((u32) (&Addr[i])));				Addr[i] = Val;			}			/*			 * Check every word within the Words			 * of tested memory			 */			for (i = 0L; i < Words; i++) {				/* read memory location */				Word = Addr[i];				Val = (u8) (~((u32) (&Addr[i])));				if ((Word ^ Val) != 0x00) {					return XST_MEMTEST_FAILED;				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 4 */		/* fall through case statement */	case XUT_FIXEDPATTERN:		{			/*			 * Generate an initial value for			 * memory testing			 */			if (Pattern == 0) {				Val = 0xA5;			}			else {				Val = Pattern;			}			/*			 * Fill the memory with fixed pattern			 */			for (i = 0L; i < Words; i++) {				/* write memory location */				Addr[i] = Val;			}			/*			 * Check every word within the Words			 * of tested memory and compare it			 * with the fixed pattern			 */			for (i = 0L; i < Words; i++) {				/* read memory location */				Word = Addr[i];				if (Word != Val) {					return XST_MEMTEST_FAILED;				}			}			if (Subtest != XUT_ALLMEMTESTS) {				return XST_SUCCESS;			}		}		/* end of case 5 */		/* this break is for the prior fall through case statements */		break;	default:		{			return XST_MEMTEST_FAILED;		}	}			/* end of switch */	/* Successfully passed memory test ! */	return XST_SUCCESS;}/*****************************************************************************//**** Rotates the provided value to the left one bit position** @param    Input is value to be rotated to the left* @param    Width is the number of bits in the input data** @return** The resulting unsigned long value of the rotate left** @note** None.******************************************************************************/static u32 RotateLeft(u32 Input, u8 Width){	u32 Msb;	u32 ReturnVal;	u32 WidthMask;	u32 MsbMask;	/*	 * set up the WidthMask and the MsbMask	 */	MsbMask = 1 << (Width - 1);	WidthMask = (MsbMask << 1) - 1;	/*	 * set the width of the Input to the correct width	 */	Input = Input & WidthMask;	Msb = Input & MsbMask;	ReturnVal = Input << 1;	if (Msb != 0x00000000) {		ReturnVal = ReturnVal | 0x00000001;	}	ReturnVal = ReturnVal & WidthMask;	return (ReturnVal);}#ifdef ROTATE_RIGHT/*****************************************************************************//**** Rotates the provided value to the right one bit position** @param    Input is value to be rotated to the right* @param    Width is the number of bits in the input data** @return** The resulting u32 value of the rotate right** @note** None.******************************************************************************/static u32 RotateRight(u32 Input, u8 Width){	u32 Lsb;	u32 ReturnVal;	u32 WidthMask;	u32 MsbMask;	/*	 * set up the WidthMask and the MsbMask	 */	MsbMask = 1 << (Width - 1);	WidthMask = (MsbMask << 1) - 1;	/*	 * set the width of the Input to the correct width	 */	Input = Input & WidthMask;	ReturnVal = Input >> 1;	Lsb = Input & 0x00000001;	if (Lsb != 0x00000000) {		ReturnVal = ReturnVal | MsbMask;	}	ReturnVal = ReturnVal & WidthMask;	return (ReturnVal);}#endif /* ROTATE_RIGHT */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -