📄 controller.h
字号:
#ifndef _CONTROLLER_H_
#define _CONTROLLER_H_
#include "include.h"
#include "GA.h"
#include "NeuralNet.h"
class CController
{
private:
vector<SGenome> m_vecThePopulation;
CGA* m_pGA;
int m_iNumWeightsInNN;
vector<double> m_vecAverageFitness;
vector<double> m_vecBestFitness;
public:
int m_iGeneration;
vector<CNeuralNet> m_vecNN;
CController();
~CController();
void ComputeFitness(vector<vector<double>> &SetIn, vector<vector<double>> &SetOut);
};
CController::CController() : m_pGA(NULL),
m_iGeneration(0)
{
for(int i=0; i<30; i++)
m_vecNN.push_back(CNeuralNet());
m_iNumWeightsInNN=m_vecNN[0].GetNumberOfWeights();
m_pGA=new CGA(30,0.1,0.7,m_iNumWeightsInNN);
m_vecThePopulation=m_pGA->GetChromos();
for(int i=0; i<30; i++)
m_vecNN[i].PutWeights(m_vecThePopulation[i].vecWeights);
}
CController::~CController()
{
delete m_pGA;
}
void CController::ComputeFitness(vector<vector<double>> &SetIn, vector<vector<double>> &SetOut)
{
vector<vector<double>> vecSetIn=SetIn;
while(true)
{
for(int i=0; i<30; i++)
{
m_vecNN[i].m_dErrorSum=0.0;
SetIn=vecSetIn;//
for(int vec=0; vec<(int)SetIn.size(); vec++)
{
vector<double> outputs=m_vecNN[i].Update(SetIn[vec]);
if(outputs.size()==0)
return;
double error=0;
for(int o=0; o<m_vecNN[i].GetNumOutputs(); o++)
{
error += (SetOut[vec][o]-outputs[o])*(SetOut[vec][o]-outputs[o]);
}
m_vecNN[i].m_dErrorSum += error;
}
m_vecNN[i].m_dFitness = 100-m_vecNN[i].m_dErrorSum;//
m_vecThePopulation[i].dFitness = m_vecNN[i].m_dFitness;
}
m_vecThePopulation = m_pGA->Epoch(m_vecThePopulation);
m_iGeneration++;
for(int i=0; i<30; i++)
{
m_vecNN[i].PutWeights(m_vecThePopulation[i].vecWeights);
m_vecNN[i].m_dFitness=0;
}
if(m_vecNN[0].m_dErrorSum<0.01)
break;
}
MessageBoxA(NULL,"Training complete!","GA",MB_OK);
}
#endif;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -