📄 lcd.vhd
字号:
--Data_s1_waits_for_write in a cycle, which is an e_mux
Data_s1_waits_for_write <= Vector_To_Std_Logic(((std_logic_vector'("0000000000000000000000000000000") & (A_TOSTDLOGICVECTOR(Data_s1_in_a_write_cycle))) AND std_logic_vector'("00000000000000000000000000000000")));
--Data_s1_in_a_write_cycle assignment, which is an e_assign
Data_s1_in_a_write_cycle <= internal_cpu_data_master_granted_Data_s1 AND cpu_data_master_write;
--in_a_write_cycle assignment, which is an e_mux
in_a_write_cycle <= Data_s1_in_a_write_cycle;
wait_for_Data_s1_counter <= std_logic'('0');
--Data_s1_pretend_byte_enable byte enable port mux, which is an e_mux
Data_s1_pretend_byte_enable <= Vector_To_Std_Logic(A_WE_StdLogicVector((std_logic'((internal_cpu_data_master_granted_Data_s1)) = '1'), (std_logic_vector'("0000000000000000000000000000") & (cpu_data_master_byteenable)), -SIGNED(std_logic_vector'("00000000000000000000000000000001"))));
--vhdl renameroo for output signals
cpu_data_master_granted_Data_s1 <= internal_cpu_data_master_granted_Data_s1;
--vhdl renameroo for output signals
cpu_data_master_qualified_request_Data_s1 <= internal_cpu_data_master_qualified_request_Data_s1;
--vhdl renameroo for output signals
cpu_data_master_requests_Data_s1 <= internal_cpu_data_master_requests_Data_s1;
--synthesis translate_off
--Data/s1 enable non-zero assertions, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
enable_nonzero_assertions <= std_logic'('0');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
enable_nonzero_assertions <= std_logic'('1');
end if;
end if;
end process;
--synthesis translate_on
end europa;
-- turn off superfluous VHDL processor warnings
-- altera message_level Level1
-- altera message_off 10034 10035 10036 10037 10230 10240 10030
library altera;
use altera.altera_europa_support_lib.all;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity EN_s1_arbitrator is
port (
-- inputs:
signal clk : IN STD_LOGIC;
signal cpu_data_master_address_to_slave : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
signal cpu_data_master_read : IN STD_LOGIC;
signal cpu_data_master_waitrequest : IN STD_LOGIC;
signal cpu_data_master_write : IN STD_LOGIC;
signal cpu_data_master_writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal reset_n : IN STD_LOGIC;
-- outputs:
signal EN_s1_address : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
signal EN_s1_chipselect : OUT STD_LOGIC;
signal EN_s1_reset_n : OUT STD_LOGIC;
signal EN_s1_write_n : OUT STD_LOGIC;
signal EN_s1_writedata : OUT STD_LOGIC;
signal cpu_data_master_granted_EN_s1 : OUT STD_LOGIC;
signal cpu_data_master_qualified_request_EN_s1 : OUT STD_LOGIC;
signal cpu_data_master_read_data_valid_EN_s1 : OUT STD_LOGIC;
signal cpu_data_master_requests_EN_s1 : OUT STD_LOGIC;
signal d1_EN_s1_end_xfer : OUT STD_LOGIC
);
attribute auto_dissolve : boolean;
attribute auto_dissolve of EN_s1_arbitrator : entity is FALSE;
end entity EN_s1_arbitrator;
architecture europa of EN_s1_arbitrator is
signal EN_s1_allgrants : STD_LOGIC;
signal EN_s1_allow_new_arb_cycle : STD_LOGIC;
signal EN_s1_any_bursting_master_saved_grant : STD_LOGIC;
signal EN_s1_any_continuerequest : STD_LOGIC;
signal EN_s1_arb_counter_enable : STD_LOGIC;
signal EN_s1_arb_share_counter : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal EN_s1_arb_share_counter_next_value : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal EN_s1_arb_share_set_values : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal EN_s1_beginbursttransfer_internal : STD_LOGIC;
signal EN_s1_begins_xfer : STD_LOGIC;
signal EN_s1_end_xfer : STD_LOGIC;
signal EN_s1_firsttransfer : STD_LOGIC;
signal EN_s1_grant_vector : STD_LOGIC;
signal EN_s1_in_a_read_cycle : STD_LOGIC;
signal EN_s1_in_a_write_cycle : STD_LOGIC;
signal EN_s1_master_qreq_vector : STD_LOGIC;
signal EN_s1_non_bursting_master_requests : STD_LOGIC;
signal EN_s1_reg_firsttransfer : STD_LOGIC;
signal EN_s1_slavearbiterlockenable : STD_LOGIC;
signal EN_s1_slavearbiterlockenable2 : STD_LOGIC;
signal EN_s1_unreg_firsttransfer : STD_LOGIC;
signal EN_s1_waits_for_read : STD_LOGIC;
signal EN_s1_waits_for_write : STD_LOGIC;
signal cpu_data_master_arbiterlock : STD_LOGIC;
signal cpu_data_master_arbiterlock2 : STD_LOGIC;
signal cpu_data_master_continuerequest : STD_LOGIC;
signal cpu_data_master_saved_grant_EN_s1 : STD_LOGIC;
signal d1_reasons_to_wait : STD_LOGIC;
signal enable_nonzero_assertions : STD_LOGIC;
signal end_xfer_arb_share_counter_term_EN_s1 : STD_LOGIC;
signal in_a_read_cycle : STD_LOGIC;
signal in_a_write_cycle : STD_LOGIC;
signal internal_cpu_data_master_granted_EN_s1 : STD_LOGIC;
signal internal_cpu_data_master_qualified_request_EN_s1 : STD_LOGIC;
signal internal_cpu_data_master_requests_EN_s1 : STD_LOGIC;
signal shifted_address_to_EN_s1_from_cpu_data_master : STD_LOGIC_VECTOR (13 DOWNTO 0);
signal wait_for_EN_s1_counter : STD_LOGIC;
begin
process (clk, reset_n)
begin
if reset_n = '0' then
d1_reasons_to_wait <= std_logic'('0');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
d1_reasons_to_wait <= NOT EN_s1_end_xfer;
end if;
end if;
end process;
EN_s1_begins_xfer <= NOT d1_reasons_to_wait AND (internal_cpu_data_master_qualified_request_EN_s1);
internal_cpu_data_master_requests_EN_s1 <= ((to_std_logic(((Std_Logic_Vector'(cpu_data_master_address_to_slave(13 DOWNTO 4) & std_logic_vector'("0000")) = std_logic_vector'("10000000010000")))) AND ((cpu_data_master_read OR cpu_data_master_write)))) AND cpu_data_master_write;
--EN_s1_arb_share_counter set values, which is an e_mux
EN_s1_arb_share_set_values <= std_logic_vector'("01");
--EN_s1_non_bursting_master_requests mux, which is an e_mux
EN_s1_non_bursting_master_requests <= internal_cpu_data_master_requests_EN_s1;
--EN_s1_any_bursting_master_saved_grant mux, which is an e_mux
EN_s1_any_bursting_master_saved_grant <= std_logic'('0');
--EN_s1_arb_share_counter_next_value assignment, which is an e_assign
EN_s1_arb_share_counter_next_value <= A_EXT (A_WE_StdLogicVector((std_logic'(EN_s1_firsttransfer) = '1'), (((std_logic_vector'("0000000000000000000000000000000") & (EN_s1_arb_share_set_values)) - std_logic_vector'("000000000000000000000000000000001"))), A_WE_StdLogicVector((std_logic'(or_reduce(EN_s1_arb_share_counter)) = '1'), (((std_logic_vector'("0000000000000000000000000000000") & (EN_s1_arb_share_counter)) - std_logic_vector'("000000000000000000000000000000001"))), std_logic_vector'("000000000000000000000000000000000"))), 2);
--EN_s1_allgrants all slave grants, which is an e_mux
EN_s1_allgrants <= EN_s1_grant_vector;
--EN_s1_end_xfer assignment, which is an e_assign
EN_s1_end_xfer <= NOT ((EN_s1_waits_for_read OR EN_s1_waits_for_write));
--end_xfer_arb_share_counter_term_EN_s1 arb share counter enable term, which is an e_assign
end_xfer_arb_share_counter_term_EN_s1 <= EN_s1_end_xfer AND (((NOT EN_s1_any_bursting_master_saved_grant OR in_a_read_cycle) OR in_a_write_cycle));
--EN_s1_arb_share_counter arbitration counter enable, which is an e_assign
EN_s1_arb_counter_enable <= ((end_xfer_arb_share_counter_term_EN_s1 AND EN_s1_allgrants)) OR ((end_xfer_arb_share_counter_term_EN_s1 AND NOT EN_s1_non_bursting_master_requests));
--EN_s1_arb_share_counter counter, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
EN_s1_arb_share_counter <= std_logic_vector'("00");
elsif clk'event and clk = '1' then
if std_logic'(EN_s1_arb_counter_enable) = '1' then
EN_s1_arb_share_counter <= EN_s1_arb_share_counter_next_value;
end if;
end if;
end process;
--EN_s1_slavearbiterlockenable slave enables arbiterlock, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
EN_s1_slavearbiterlockenable <= std_logic'('0');
elsif clk'event and clk = '1' then
if std_logic'((((EN_s1_master_qreq_vector AND end_xfer_arb_share_counter_term_EN_s1)) OR ((end_xfer_arb_share_counter_term_EN_s1 AND NOT EN_s1_non_bursting_master_requests)))) = '1' then
EN_s1_slavearbiterlockenable <= or_reduce(EN_s1_arb_share_counter_next_value);
end if;
end if;
end process;
--cpu/data_master EN/s1 arbiterlock, which is an e_assign
cpu_data_master_arbiterlock <= EN_s1_slavearbiterlockenable AND cpu_data_master_continuerequest;
--EN_s1_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign
EN_s1_slavearbiterlockenable2 <= or_reduce(EN_s1_arb_share_counter_next_value);
--cpu/data_master EN/s1 arbiterlock2, which is an e_assign
cpu_data_master_arbiterlock2 <= EN_s1_slavearbiterlockenable2 AND cpu_data_master_continuerequest;
--EN_s1_any_continuerequest at least one master continues requesting, which is an e_assign
EN_s1_any_continuerequest <= std_logic'('1');
--cpu_data_master_continuerequest continued request, which is an e_assign
cpu_data_master_continuerequest <= std_logic'('1');
internal_cpu_data_master_qualified_request_EN_s1 <= internal_cpu_data_master_requests_EN_s1 AND NOT (((NOT cpu_data_master_waitrequest) AND cpu_data_master_write));
--EN_s1_writedata mux, which is an e_mux
EN_s1_writedata <= cpu_data_master_writedata(0);
--master is always granted when requested
internal_cpu_data_master_granted_EN_s1 <= internal_cpu_data_master_qualified_request_EN_s1;
--cpu/data_master saved-grant EN/s1, which is an e_assign
cpu_data_master_saved_grant_EN_s1 <= internal_cpu_data_master_requests_EN_s1;
--allow new arb cycle for EN/s1, which is an e_assign
EN_s1_allow_new_arb_cycle <= std_logic'('1');
--placeholder chosen master
EN_s1_grant_vector <= std_logic'('1');
--placeholder vector of master qualified-requests
EN_s1_master_qreq_vector <= std_logic'('1');
--EN_s1_reset_n assignment, which is an e_assign
EN_s1_reset_n <= reset_n;
EN_s1_chipselect <= internal_cpu_data_master_granted_EN_s1;
--EN_s1_firsttransfer first transaction, which is an e_assign
EN_s1_firsttransfer <= A_WE_StdLogic((std_logic'(EN_s1_begins_xfer) = '1'), EN_s1_unreg_firsttransfer, EN_s1_reg_firsttransfer);
--EN_s1_unreg_firsttransfer first transaction, which is an e_assign
EN_s1_unreg_firsttransfer <= NOT ((EN_s1_slavearbiterlockenable AND EN_s1_any_continuerequest));
--EN_s1_reg_firsttransfer first transaction, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
EN_s1_reg_firsttransfer <= std_logic'('1');
elsif clk'event and clk = '1' then
if std_logic'(EN_s1_begins_xfer) = '1' then
EN_s1_reg_firsttransfer <= EN_s1_unreg_firsttransfer;
end if;
end if;
end process;
--EN_s1_beginbursttransfer_internal begin burst transfer, which is an e_assign
EN_s1_beginbursttransfer_internal <= EN_s1_begins_xfer;
--~EN_s1_write_n assignment, which is an e_mux
EN_s1_write_n <= NOT ((internal_cpu_data_master_granted_EN_s1 AND cpu_data_master_write));
shifted_address_to_EN_s1_from_cpu_data_master <= cpu_data_master_address_to_slave;
--EN_s1_address mux, which is an e_mux
EN_s1_address <= A_EXT (A_SRL(shifted_address_to_EN_s1_from_cpu_data_master,std_logic_vector'("00000000000000000000000000000010")), 2);
--d1_EN_s1_end_xfer register, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -