📄 lcd.vhd
字号:
--megafunction wizard: %Altera SOPC Builder%
--GENERATION: STANDARD
--VERSION: WM1.0
--Legal Notice: (C)2007 Altera Corporation. All rights reserved. Your
--use of Altera Corporation's design tools, logic functions and other
--software and tools, and its AMPP partner logic functions, and any
--output files any of the foregoing (including device programming or
--simulation files), and any associated documentation or information are
--expressly subject to the terms and conditions of the Altera Program
--License Subscription Agreement or other applicable license agreement,
--including, without limitation, that your use is for the sole purpose
--of programming logic devices manufactured by Altera and sold by Altera
--or its authorized distributors. Please refer to the applicable
--agreement for further details.
-- turn off superfluous VHDL processor warnings
-- altera message_level Level1
-- altera message_off 10034 10035 10036 10037 10230 10240 10030
library altera;
use altera.altera_europa_support_lib.all;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity Data_s1_arbitrator is
port (
-- inputs:
signal clk : IN STD_LOGIC;
signal cpu_data_master_address_to_slave : IN STD_LOGIC_VECTOR (13 DOWNTO 0);
signal cpu_data_master_byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
signal cpu_data_master_read : IN STD_LOGIC;
signal cpu_data_master_waitrequest : IN STD_LOGIC;
signal cpu_data_master_write : IN STD_LOGIC;
signal cpu_data_master_writedata : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
signal reset_n : IN STD_LOGIC;
-- outputs:
signal Data_s1_address : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
signal Data_s1_chipselect : OUT STD_LOGIC;
signal Data_s1_reset_n : OUT STD_LOGIC;
signal Data_s1_write_n : OUT STD_LOGIC;
signal Data_s1_writedata : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
signal cpu_data_master_granted_Data_s1 : OUT STD_LOGIC;
signal cpu_data_master_qualified_request_Data_s1 : OUT STD_LOGIC;
signal cpu_data_master_read_data_valid_Data_s1 : OUT STD_LOGIC;
signal cpu_data_master_requests_Data_s1 : OUT STD_LOGIC;
signal d1_Data_s1_end_xfer : OUT STD_LOGIC
);
attribute auto_dissolve : boolean;
attribute auto_dissolve of Data_s1_arbitrator : entity is FALSE;
end entity Data_s1_arbitrator;
architecture europa of Data_s1_arbitrator is
signal Data_s1_allgrants : STD_LOGIC;
signal Data_s1_allow_new_arb_cycle : STD_LOGIC;
signal Data_s1_any_bursting_master_saved_grant : STD_LOGIC;
signal Data_s1_any_continuerequest : STD_LOGIC;
signal Data_s1_arb_counter_enable : STD_LOGIC;
signal Data_s1_arb_share_counter : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal Data_s1_arb_share_counter_next_value : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal Data_s1_arb_share_set_values : STD_LOGIC_VECTOR (1 DOWNTO 0);
signal Data_s1_beginbursttransfer_internal : STD_LOGIC;
signal Data_s1_begins_xfer : STD_LOGIC;
signal Data_s1_end_xfer : STD_LOGIC;
signal Data_s1_firsttransfer : STD_LOGIC;
signal Data_s1_grant_vector : STD_LOGIC;
signal Data_s1_in_a_read_cycle : STD_LOGIC;
signal Data_s1_in_a_write_cycle : STD_LOGIC;
signal Data_s1_master_qreq_vector : STD_LOGIC;
signal Data_s1_non_bursting_master_requests : STD_LOGIC;
signal Data_s1_pretend_byte_enable : STD_LOGIC;
signal Data_s1_reg_firsttransfer : STD_LOGIC;
signal Data_s1_slavearbiterlockenable : STD_LOGIC;
signal Data_s1_slavearbiterlockenable2 : STD_LOGIC;
signal Data_s1_unreg_firsttransfer : STD_LOGIC;
signal Data_s1_waits_for_read : STD_LOGIC;
signal Data_s1_waits_for_write : STD_LOGIC;
signal cpu_data_master_arbiterlock : STD_LOGIC;
signal cpu_data_master_arbiterlock2 : STD_LOGIC;
signal cpu_data_master_continuerequest : STD_LOGIC;
signal cpu_data_master_saved_grant_Data_s1 : STD_LOGIC;
signal d1_reasons_to_wait : STD_LOGIC;
signal enable_nonzero_assertions : STD_LOGIC;
signal end_xfer_arb_share_counter_term_Data_s1 : STD_LOGIC;
signal in_a_read_cycle : STD_LOGIC;
signal in_a_write_cycle : STD_LOGIC;
signal internal_cpu_data_master_granted_Data_s1 : STD_LOGIC;
signal internal_cpu_data_master_qualified_request_Data_s1 : STD_LOGIC;
signal internal_cpu_data_master_requests_Data_s1 : STD_LOGIC;
signal shifted_address_to_Data_s1_from_cpu_data_master : STD_LOGIC_VECTOR (13 DOWNTO 0);
signal wait_for_Data_s1_counter : STD_LOGIC;
begin
process (clk, reset_n)
begin
if reset_n = '0' then
d1_reasons_to_wait <= std_logic'('0');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
d1_reasons_to_wait <= NOT Data_s1_end_xfer;
end if;
end if;
end process;
Data_s1_begins_xfer <= NOT d1_reasons_to_wait AND (internal_cpu_data_master_qualified_request_Data_s1);
internal_cpu_data_master_requests_Data_s1 <= ((to_std_logic(((Std_Logic_Vector'(cpu_data_master_address_to_slave(13 DOWNTO 4) & std_logic_vector'("0000")) = std_logic_vector'("10000000110000")))) AND ((cpu_data_master_read OR cpu_data_master_write)))) AND cpu_data_master_write;
--Data_s1_arb_share_counter set values, which is an e_mux
Data_s1_arb_share_set_values <= std_logic_vector'("01");
--Data_s1_non_bursting_master_requests mux, which is an e_mux
Data_s1_non_bursting_master_requests <= internal_cpu_data_master_requests_Data_s1;
--Data_s1_any_bursting_master_saved_grant mux, which is an e_mux
Data_s1_any_bursting_master_saved_grant <= std_logic'('0');
--Data_s1_arb_share_counter_next_value assignment, which is an e_assign
Data_s1_arb_share_counter_next_value <= A_EXT (A_WE_StdLogicVector((std_logic'(Data_s1_firsttransfer) = '1'), (((std_logic_vector'("0000000000000000000000000000000") & (Data_s1_arb_share_set_values)) - std_logic_vector'("000000000000000000000000000000001"))), A_WE_StdLogicVector((std_logic'(or_reduce(Data_s1_arb_share_counter)) = '1'), (((std_logic_vector'("0000000000000000000000000000000") & (Data_s1_arb_share_counter)) - std_logic_vector'("000000000000000000000000000000001"))), std_logic_vector'("000000000000000000000000000000000"))), 2);
--Data_s1_allgrants all slave grants, which is an e_mux
Data_s1_allgrants <= Data_s1_grant_vector;
--Data_s1_end_xfer assignment, which is an e_assign
Data_s1_end_xfer <= NOT ((Data_s1_waits_for_read OR Data_s1_waits_for_write));
--end_xfer_arb_share_counter_term_Data_s1 arb share counter enable term, which is an e_assign
end_xfer_arb_share_counter_term_Data_s1 <= Data_s1_end_xfer AND (((NOT Data_s1_any_bursting_master_saved_grant OR in_a_read_cycle) OR in_a_write_cycle));
--Data_s1_arb_share_counter arbitration counter enable, which is an e_assign
Data_s1_arb_counter_enable <= ((end_xfer_arb_share_counter_term_Data_s1 AND Data_s1_allgrants)) OR ((end_xfer_arb_share_counter_term_Data_s1 AND NOT Data_s1_non_bursting_master_requests));
--Data_s1_arb_share_counter counter, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
Data_s1_arb_share_counter <= std_logic_vector'("00");
elsif clk'event and clk = '1' then
if std_logic'(Data_s1_arb_counter_enable) = '1' then
Data_s1_arb_share_counter <= Data_s1_arb_share_counter_next_value;
end if;
end if;
end process;
--Data_s1_slavearbiterlockenable slave enables arbiterlock, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
Data_s1_slavearbiterlockenable <= std_logic'('0');
elsif clk'event and clk = '1' then
if std_logic'((((Data_s1_master_qreq_vector AND end_xfer_arb_share_counter_term_Data_s1)) OR ((end_xfer_arb_share_counter_term_Data_s1 AND NOT Data_s1_non_bursting_master_requests)))) = '1' then
Data_s1_slavearbiterlockenable <= or_reduce(Data_s1_arb_share_counter_next_value);
end if;
end if;
end process;
--cpu/data_master Data/s1 arbiterlock, which is an e_assign
cpu_data_master_arbiterlock <= Data_s1_slavearbiterlockenable AND cpu_data_master_continuerequest;
--Data_s1_slavearbiterlockenable2 slave enables arbiterlock2, which is an e_assign
Data_s1_slavearbiterlockenable2 <= or_reduce(Data_s1_arb_share_counter_next_value);
--cpu/data_master Data/s1 arbiterlock2, which is an e_assign
cpu_data_master_arbiterlock2 <= Data_s1_slavearbiterlockenable2 AND cpu_data_master_continuerequest;
--Data_s1_any_continuerequest at least one master continues requesting, which is an e_assign
Data_s1_any_continuerequest <= std_logic'('1');
--cpu_data_master_continuerequest continued request, which is an e_assign
cpu_data_master_continuerequest <= std_logic'('1');
internal_cpu_data_master_qualified_request_Data_s1 <= internal_cpu_data_master_requests_Data_s1 AND NOT (((NOT cpu_data_master_waitrequest) AND cpu_data_master_write));
--Data_s1_writedata mux, which is an e_mux
Data_s1_writedata <= cpu_data_master_writedata (7 DOWNTO 0);
--master is always granted when requested
internal_cpu_data_master_granted_Data_s1 <= internal_cpu_data_master_qualified_request_Data_s1;
--cpu/data_master saved-grant Data/s1, which is an e_assign
cpu_data_master_saved_grant_Data_s1 <= internal_cpu_data_master_requests_Data_s1;
--allow new arb cycle for Data/s1, which is an e_assign
Data_s1_allow_new_arb_cycle <= std_logic'('1');
--placeholder chosen master
Data_s1_grant_vector <= std_logic'('1');
--placeholder vector of master qualified-requests
Data_s1_master_qreq_vector <= std_logic'('1');
--Data_s1_reset_n assignment, which is an e_assign
Data_s1_reset_n <= reset_n;
Data_s1_chipselect <= internal_cpu_data_master_granted_Data_s1;
--Data_s1_firsttransfer first transaction, which is an e_assign
Data_s1_firsttransfer <= A_WE_StdLogic((std_logic'(Data_s1_begins_xfer) = '1'), Data_s1_unreg_firsttransfer, Data_s1_reg_firsttransfer);
--Data_s1_unreg_firsttransfer first transaction, which is an e_assign
Data_s1_unreg_firsttransfer <= NOT ((Data_s1_slavearbiterlockenable AND Data_s1_any_continuerequest));
--Data_s1_reg_firsttransfer first transaction, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
Data_s1_reg_firsttransfer <= std_logic'('1');
elsif clk'event and clk = '1' then
if std_logic'(Data_s1_begins_xfer) = '1' then
Data_s1_reg_firsttransfer <= Data_s1_unreg_firsttransfer;
end if;
end if;
end process;
--Data_s1_beginbursttransfer_internal begin burst transfer, which is an e_assign
Data_s1_beginbursttransfer_internal <= Data_s1_begins_xfer;
--~Data_s1_write_n assignment, which is an e_mux
Data_s1_write_n <= NOT ((((internal_cpu_data_master_granted_Data_s1 AND cpu_data_master_write)) AND Data_s1_pretend_byte_enable));
shifted_address_to_Data_s1_from_cpu_data_master <= cpu_data_master_address_to_slave;
--Data_s1_address mux, which is an e_mux
Data_s1_address <= A_EXT (A_SRL(shifted_address_to_Data_s1_from_cpu_data_master,std_logic_vector'("00000000000000000000000000000010")), 2);
--d1_Data_s1_end_xfer register, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
d1_Data_s1_end_xfer <= std_logic'('1');
elsif clk'event and clk = '1' then
if (std_logic_vector'("00000000000000000000000000000001")) /= std_logic_vector'("00000000000000000000000000000000") then
d1_Data_s1_end_xfer <= Data_s1_end_xfer;
end if;
end if;
end process;
--Data_s1_waits_for_read in a cycle, which is an e_mux
Data_s1_waits_for_read <= Data_s1_in_a_read_cycle AND Data_s1_begins_xfer;
--Data_s1_in_a_read_cycle assignment, which is an e_assign
Data_s1_in_a_read_cycle <= internal_cpu_data_master_granted_Data_s1 AND cpu_data_master_read;
--in_a_read_cycle assignment, which is an e_mux
in_a_read_cycle <= Data_s1_in_a_read_cycle;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -