📄 eigenval.c
字号:
/****************************************************************************//* eigenval.c *//****************************************************************************//* *//* estimation of extremal EIGENVALues *//* *//* Copyright (C) 1992-1996 Tomas Skalicky. All rights reserved. *//* *//****************************************************************************//* *//* ANY USE OF THIS CODE CONSTITUTES ACCEPTANCE OF THE TERMS *//* OF THE COPYRIGHT NOTICE (SEE FILE COPYRGHT.H) *//* *//****************************************************************************/#include <stddef.h>#include <math.h>#include "eigenval.h"#include "elcmp.h"#include "errhandl.h"#include "operats.h"#include "rtc.h"#include "copyrght.h"typedef struct { double MinEigenval; double MaxEigenval; PrecondProcType PrecondProcUsed; double OmegaPrecondUsed;} EigenvalInfoType;/* accuracy for the estimation of extremal eigenvalues */static double EigenvalEps = 1e-4;static void EstimEigenvals(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond);static void SearchEigenval(size_t n, double *Alpha, double *Beta, size_t k, double BoundMin, double BoundMax, Boolean *Found, double *Lambda);static size_t NoSmallerEigenvals(size_t n, double *Alpha, double *Beta, double Lambda);#ifdef __linux__ #define max(x, y) ((x) > (y) ? (x) : (y)) #define min(x, y) ((x) < (y) ? (x) : (y))#endif void SetEigenvalAccuracy(double Eps)/* set accuracy for the estimation of extremal eigenvalues */{ EigenvalEps = Eps;}double GetMinEigenval(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond)/* returns estimate for minimum eigenvalue of the matrix A */{ double MinEigenval; EigenvalInfoType *EigenvalInfo; Q_Lock(A); if (LASResult() == LASOK) { EigenvalInfo = (EigenvalInfoType *)*(Q_EigenvalInfo(A)); /* if eigenvalues not estimated yet, ... */ if (EigenvalInfo == NULL) { EigenvalInfo = (EigenvalInfoType *)malloc(sizeof(EigenvalInfoType)); if (EigenvalInfo != NULL) { *(Q_EigenvalInfo(A)) = (void *)EigenvalInfo; EstimEigenvals(A, PrecondProc, OmegaPrecond); } else { LASError(LASMemAllocErr, "GetMinEigenval", Q_GetName(A), NULL, NULL); } } /* if eigenvalues estimated with an other preconditioner, ... */ if (EigenvalInfo->PrecondProcUsed != PrecondProc || EigenvalInfo->OmegaPrecondUsed != OmegaPrecond) { EstimEigenvals(A, PrecondProc, OmegaPrecond); } if (LASResult() == LASOK) MinEigenval = EigenvalInfo->MinEigenval; else MinEigenval = 1.0; } else { MinEigenval = 1.0; } return(MinEigenval); }double GetMaxEigenval(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond)/* returns estimate for maximum eigenvalue of the matrix A */{ double MaxEigenval; EigenvalInfoType *EigenvalInfo; Q_Lock(A); if (LASResult() == LASOK) { EigenvalInfo = (EigenvalInfoType *)*(Q_EigenvalInfo(A)); /* if eigenvalues not estimated yet, ... */ if (EigenvalInfo == NULL) { EigenvalInfo = (EigenvalInfoType *)malloc(sizeof(EigenvalInfoType)); if (EigenvalInfo != NULL) { *(Q_EigenvalInfo(A)) = (void *)EigenvalInfo; EstimEigenvals(A, PrecondProc, OmegaPrecond); } else { LASError(LASMemAllocErr, "GetMaxEigenval", Q_GetName(A), NULL, NULL); } } /* if eigenvalues estimated with an other preconditioner, ... */ if (EigenvalInfo->PrecondProcUsed != PrecondProc || EigenvalInfo->OmegaPrecondUsed != OmegaPrecond) { EstimEigenvals(A, PrecondProc, OmegaPrecond); } if (LASResult() == LASOK) MaxEigenval = EigenvalInfo->MaxEigenval; else MaxEigenval = 1.0; } else { MaxEigenval = 1.0; } return(MaxEigenval); }static void EstimEigenvals(QMatrix *A, PrecondProcType PrecondProc, double OmegaPrecond)/* estimates extremal eigenvalues of the matrix A by means of the Lanczos method */{ /* * for details to the Lanczos algorithm see * * G. H. Golub, Ch. F. van Loan: * Matrix Computations; * North Oxford Academic, Oxford, 1986 * * (for modification for preconditioned matrices compare with sec. 10.3) * */ double LambdaMin = 0.0, LambdaMax = 0.0; double LambdaMinOld, LambdaMaxOld; double GershBoundMin = 0.0, GershBoundMax = 0.0; double *Alpha, *Beta; size_t Dim, j; Boolean Found; Vector q, qOld, h, p; Q_Lock(A); Dim = Q_GetDim(A); V_Constr(&q, "q", Dim, Normal, True); V_Constr(&qOld, "qOld", Dim, Normal, True); V_Constr(&h, "h", Dim, Normal, True); if (PrecondProc != NULL) V_Constr(&p, "p", Dim, Normal, True); if (LASResult() == LASOK) { Alpha = (double *)malloc((Dim + 1) * sizeof(double)); Beta = (double *)malloc((Dim + 1) * sizeof(double)); if (Alpha != NULL && Beta != NULL) { j = 0; V_SetAllCmp(&qOld, 0.0); V_SetRndCmp(&q); if (Q_KerDefined(A)) OrthoRightKer_VQ(&q, A); if (Q_GetSymmetry(A) && PrecondProc != NULL) { (*PrecondProc)(A, &p, &q, OmegaPrecond); MulAsgn_VS(&q, 1.0 / sqrt(Mul_VV(&q, &p))); } else { MulAsgn_VS(&q, 1.0 / l2Norm_V(&q)); } Beta[0] = 1.0; do { j++; if (Q_GetSymmetry(A) && PrecondProc != NULL) { /* p = M^(-1) q */ (*PrecondProc)(A, &p, &q, OmegaPrecond); /* h = A p */ Asgn_VV(&h, Mul_QV(A, &p)); if (Q_KerDefined(A)) OrthoRightKer_VQ(&h, A); /* Alpha = p . h */ Alpha[j] = Mul_VV(&p, &h); /* r = h - Alpha q - Beta qOld */ SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld))); /* z = M^(-1) r */ (*PrecondProc)(A, &p, &h, OmegaPrecond); /* Beta = sqrt(r . z) */ Beta[j] = sqrt(Mul_VV(&h, &p)); Asgn_VV(&qOld, &q); /* q = r / Beta */ Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h)); } else { /* h = A p */ if (Q_GetSymmetry(A)) { Asgn_VV(&h, Mul_QV(A, &q)); } else { if (PrecondProc != NULL) { (*PrecondProc)(A, &h, Mul_QV(A, &q), OmegaPrecond); (*PrecondProc)(Transp_Q(A), &h, &h, OmegaPrecond); Asgn_VV(&h, Mul_QV(Transp_Q(A), &h)); } else { Asgn_VV(&h, Mul_QV(Transp_Q(A), Mul_QV(A, &q))); } } if (Q_KerDefined(A)) OrthoRightKer_VQ(&h, A); /* Alpha = q . h */ Alpha[j] = Mul_VV(&q, &h); /* r = h - Alpha q - Beta qOld */ SubAsgn_VV(&h, Add_VV(Mul_SV(Alpha[j], &q), Mul_SV(Beta[j-1], &qOld))); /* Beta = || r || */ Beta[j] = l2Norm_V(&h); Asgn_VV(&qOld, &q); /* q = r / Beta */ Asgn_VV(&q, Mul_SV(1.0 / Beta[j], &h)); } LambdaMaxOld = LambdaMax; LambdaMinOld = LambdaMin; /* determination of extremal eigenvalues of the tridiagonal matrix (Beta[i-1] Alpha[i] Beta[i]) (where 1 <= i <= j) by means of the method of bisection; bounds for eigenvalues are determined after Gershgorin circle theorem */ if (j == 1) { GershBoundMin = Alpha[1] - fabs(Beta[1]); GershBoundMax = Alpha[1] + fabs(Beta[1]); LambdaMin = Alpha[1]; LambdaMax = Alpha[1]; } else { GershBoundMin = min(Alpha[j] - fabs(Beta[j]) - fabs(Beta[j - 1]), GershBoundMin); GershBoundMax = max(Alpha[j] + fabs(Beta[j]) + fabs(Beta[j - 1]), GershBoundMax); SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, LambdaMin, &Found, &LambdaMin); if (!Found) SearchEigenval(j, Alpha, Beta, 1, GershBoundMin, GershBoundMax, &Found, &LambdaMin); SearchEigenval(j, Alpha, Beta, j, LambdaMax, GershBoundMax, &Found, &LambdaMax); if (!Found) SearchEigenval(j, Alpha, Beta, j, GershBoundMin, GershBoundMax, &Found, &LambdaMax); } } while (!IsZero(Beta[j]) && j < Dim && (fabs(LambdaMin - LambdaMinOld) > EigenvalEps * LambdaMin || fabs(LambdaMax - LambdaMaxOld) > EigenvalEps * LambdaMax) && LASResult() == LASOK); if (Q_GetSymmetry(A)) { LambdaMin = (1.0 - j * EigenvalEps) * LambdaMin; } else { LambdaMin = (1.0 - sqrt(j) * EigenvalEps) * sqrt(LambdaMin); } if (Alpha != NULL) free(Alpha); if (Beta != NULL) free(Beta); } else { LASError(LASMemAllocErr, "EstimEigenvals", Q_GetName(A), NULL, NULL); } } V_Destr(&q); V_Destr(&qOld); V_Destr(&h); if (PrecondProc != NULL) V_Destr(&p); if (LASResult() == LASOK) { ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = LambdaMin; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = LambdaMax; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = PrecondProc; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = OmegaPrecond; } else { ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MinEigenval = 1.0; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->MaxEigenval = 1.0; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->PrecondProcUsed = NULL; ((EigenvalInfoType *)*(Q_EigenvalInfo(A)))->OmegaPrecondUsed = 1.0; } Q_Unlock(A);}static void SearchEigenval(size_t n, double *Alpha, double *Beta, size_t k, double BoundMin, double BoundMax, Boolean *Found, double *Lambda)/* search the k-th eigenvalue of the tridiagonal matrix (Beta[i-1] Alpha[i] Beta[i]) (where 1 <= i <= n) by means of the method of bisection */{ /* * for details to the method of bisection see * * G. H. Golub, Ch. F. van Loan: * Matrix Computations; * North Oxford Academic, Oxford, 1986 * */ if (NoSmallerEigenvals(n, Alpha, Beta, BoundMin) < k && NoSmallerEigenvals(n, Alpha, Beta, BoundMax) >= k) { while (fabs(BoundMax - BoundMin) > 0.01 * EigenvalEps * (fabs(BoundMin) + fabs(BoundMax))) { *Lambda = 0.5 * (BoundMin + BoundMax); if (NoSmallerEigenvals(n, Alpha, Beta, *Lambda) >= k) BoundMax = *Lambda; else BoundMin = *Lambda; } *Lambda = BoundMax; *Found = True; } else { *Found = False; }}static size_t NoSmallerEigenvals(size_t n, double *Alpha, double *Beta, double Lambda)/* returns number of eigenvalues of the tridiagonal matrix (Beta[i-1] Alpha[i] Beta[i]) (where 1 <= i <= n) which are less then Lambda */{ size_t No; double p, pNew, pOld, Sign; size_t i; No = 0; pOld = 1.0; p = (Alpha[1] - Lambda) / fabs(Beta[1]); /* check for change of sign */ if (IsZero(p) || p * pOld < 0) No++; for (i = 2; i <= n; i++) { Sign = Beta[i-1] / fabs(Beta[i-1]); pNew = ((Alpha[i] - Lambda) * p - Beta[i-1] * Sign * pOld) / fabs(Beta[i]); pOld = p; p = pNew; /* check for change of sign */ if (p * pOld < 0 || (IsZero(p) && !IsZero(pOld))) No++; } return(No);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -