📄 temperature.c
字号:
/*************************************************************************** * Copyright (C) 2004-2008 by OpenFVM team * * http://sourceforge.net/projects/openfvm/ * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/#include "variables.h"#include "vector.h"#include "matrix.h"#include "itersolv.h"#include "mesh.h"#include "material.h"#include "bcond.h"#include "param.h"#include "parallel.h"#include "gradient.h"#include "geocalc.h"#include "globals.h"#include "setup.h"#include "msolver.h"#include "temperature.h"voidCorrectFaceT (){ int i; register unsigned int face, pair; register unsigned int element, neighbor; msh_element ghost; //double dNf, dPf; double lambda; double Tpl; msh_vector gradTp; VecGhostGetLocalForm (xT, &xTl); for (i = 0; i < nbfaces; i++) { face = i; element = faces[face].element; pair = faces[face].pair; if (parameter.orthof != 0.0) gradTp = Gradient (&xTl, &xTf, LOGICAL_TRUE, element); if (pair != -1) { neighbor = faces[pair].element; /* dNf = GeoMagVector (GeoSubVectorVector (elements[neighbor].celement, faces[face].cface)); dPf = GeoMagVector (GeoSubVectorVector (elements[element].celement, faces[face].cface)); lambda = dPf / (dPf + dNf); */ lambda = 0.5; V_SetCmp (&xTf, face, V_GetCmp (&xTl, neighbor) * lambda + V_GetCmp (&xTl, element) * (1.0 - lambda)); } else { if (faces[face].bc == PROCESSOR) { ghost.index = faces[face].physreg; ghost.celement.x = V_GetCmp (&cexl, faces[face].ghost); ghost.celement.y = V_GetCmp (&ceyl, faces[face].ghost); ghost.celement.z = V_GetCmp (&cezl, faces[face].ghost); /* dNf = GeoMagVector (GeoSubVectorVector (ghost.celement, faces[face].cface)); dPf = GeoMagVector (GeoSubVectorVector (elements[element].celement, faces[face].cface)); lambda = dPf / (dPf + dNf); */ lambda = 0.5; V_SetCmp (&xTf, face, V_GetCmp (&xTl, faces[face].ghost) * lambda + V_GetCmp (&xTl, element) * (1.0 - lambda)); } else { Tpl = V_GetCmp (&xTl, element); if (parameter.orthof != 0.0) { // Non-orthogonal correction Tpl += parameter.orthof * GeoDotVectorVector (gradTp, GeoSubVectorVector (faces [face]. rpl, elements [element]. celement)); } if (faces[face].bc == ADIABATICWALL) { V_SetCmp (&xTf, face, Tpl); } } } } VecGhostRestoreLocalForm (xT, &xTl); VecAssemblyBegin (xTf); VecAssemblyEnd (xTf);}voidBuildEnergyMatrix (double dt, double schemefactor){ unsigned int i, j, n; register unsigned int face, pair; register unsigned int element, neighbor; msh_element ghost; double aep; double aen[MAXFACES]; unsigned int ani[MAXFACES]; double bep; //double dNf, dPf; double lambda; double dj; double xsi; msh_vector gradTp; msh_vector gradTn; //msh_vector gradup, gradvp, gradwp; double densp; double spheatp; double thcondj; // MatSetValues int row; int ncols; int col[MAXFACES+1]; int nvals; double val[MAXFACES+1]; VecGhostGetLocalForm (xT0, &xT0l); VecGhostGetLocalForm (xT, &xTl); VecGhostGetLocalForm (dens, &densl); VecGhostGetLocalForm (visc, &viscl); VecGhostGetLocalForm (spheat, &spheatl); VecGhostGetLocalForm (thcond, &thcondl); for (i = 0; i < nbelements; i++) { element = i; aep = 0.0; bep = 0.0; n = 0; if (parameter.orthof != 0.0) gradTp = Gradient (&xT0l, &xTf, LOGICAL_TRUE, element); densp = V_GetCmp (&densl, element); spheatp = V_GetCmp (&spheatl, element); for (j = 0; j < elements[element].nbfaces; j++) { face = elements[element].face[j]; pair = faces[face].pair; if (pair != -1) { neighbor = faces[pair].element; /* dNf = GeoMagVector (GeoSubVectorVector (elements[neighbor].celement, faces[face].cface)); dPf = GeoMagVector (GeoSubVectorVector (elements[element].celement, faces[face].cface)); lambda = dPf / (dPf + dNf); */ lambda = 0.5; thcondj = V_GetCmp (&thcondl, element) * (1.0 - lambda) + V_GetCmp (&thcondl, neighbor) * lambda; // Conduction aep += schemefactor * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp; aen[n] = schemefactor * -thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp; // Convection if (parameter.scheme[iT] == UDS) { // UDS if (V_GetCmp (&uf, face) > 0.0) xsi = 0.0; else xsi = 1.0; } else { //CDS xsi = lambda; } // Convection aep += schemefactor * (1.0 - xsi) * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp; aen[n] += schemefactor * xsi * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp; ani[n] = elements[neighbor].index; n++; // Conduction bep += -(1.0 - schemefactor) * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xT0l, element); bep += +(1.0 - schemefactor) * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xT0l, neighbor); // Convection bep += -(1.0 - schemefactor) * (1.0 - xsi) * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xT0l, element); bep += -(1.0 - schemefactor) * xsi * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xT0l, neighbor); if (parameter.orthof != 0.0) gradTn = Gradient (&xT0l, &xTf, LOGICAL_TRUE, neighbor); if (parameter.orthof != 0.0) { // Non-orthogonal correction term bep += parameter.orthof * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * (GeoDotVectorVector (gradTn, GeoSubVectorVector (faces[face].rnl, elements[neighbor].celement)) - GeoDotVectorVector (gradTp, GeoSubVectorVector (faces[face].rpl, elements [element]. celement))); } } else { if (faces[face].bc == PROCESSOR) { ghost.index = faces[face].physreg; ghost.celement.x = V_GetCmp (&cexl, faces[face].ghost); ghost.celement.y = V_GetCmp (&ceyl, faces[face].ghost); ghost.celement.z = V_GetCmp (&cezl, faces[face].ghost); dj = GeoMagVector (GeoSubVectorVector (ghost.celement, elements[element].celement)); /* dNf = GeoMagVector (GeoSubVectorVector (ghost.celement, faces[face].cface)); dPf = GeoMagVector (GeoSubVectorVector (elements[element].celement, faces[face].cface)); lambda = dPf / (dPf + dNf); */ lambda = 0.5; thcondj = V_GetCmp (&thcondl, element) * (1.0 - lambda) + V_GetCmp (&thcondl, faces [face]. ghost) * lambda; // Conduction aep += schemefactor * thcondj * faces[face].Aj / dj / elements[element].Vp; aen[n] = schemefactor * -thcondj * faces[face].Aj / dj / elements[element].Vp; // Convection if (parameter.scheme[iT] == UDS) { // UDS if (V_GetCmp (&uf, face) > 0.0) xsi = 0.0; else xsi = 1.0; } else { //CDS xsi = lambda; } // Convection aep += schemefactor * (1.0 - xsi) * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp; aen[n] += schemefactor * xsi * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp; ani[n] = ghost.index; n++; // Conduction bep += -(1.0 - schemefactor) * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xT0l, element); bep += +(1.0 - schemefactor) * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xT0l, faces[face].ghost); // Convection bep += -(1.0 - schemefactor) * (1.0 - xsi) * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xT0l, element); bep += -(1.0 - schemefactor) * xsi * densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xT0l, faces [face]. ghost); /* if (parameter.orthof != 0.0) gradTn = Gradient (&xTl, &xTf, LOGICAL_TRUE, faces[face].ghost); if (parameter.orthof != 0.0) { // Non-orthogonal correction term bep += parameter.orthof * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * (GeoDotVectorVector (gradTn, GeoSubVectorVector (faces[face].rnl, ghost.celement)) - GeoDotVectorVector (gradTp, GeoSubVectorVector (faces[face].rpl, elements[element]. celement))); } */ } else { thcondj = material.bthcond; if (faces[face].bc != EMPTY && faces[face].bc != ADIABATICWALL) { // Conduction aep += schemefactor * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp; bep += thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xTf, face); bep += -(1.0 - schemefactor) * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * V_GetCmp (&xT0l, element); // Convection if (parameter.scheme[iT] == UDS) { // UDS if (V_GetCmp (&uf, face) > 0.0) { aep += densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp; } else { bep += -densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xTf, face); } } else { // CDS bep += -densp * spheatp * V_GetCmp (&uf, face) * faces[face].Aj / elements[element].Vp * V_GetCmp (&xTf, face); } if (parameter.orthof != 0.0) { // Non-orthogonal correction term bep += parameter.orthof * thcondj * faces[face].Aj / (faces[face].dj + faces[face].kj) / elements[element].Vp * GeoDotVectorVector (gradTp, GeoSubVectorVector (faces [face]. rpl, elements [element]. celement)); } } } } } // Unsteady term if (dt > 0) { aep += densp * spheatp / dt; bep += densp * spheatp / dt * V_GetCmp (&xT0l, element); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -