📄 oc54_cpu.v
字号:
/////////////////////////////////////////////////////////////////////
//// ////
//// OpenCores54 DSP, CPU ////
//// ////
//// Author: Richard Herveille ////
//// richard@asics.ws ////
//// www.asics.ws ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2002 Richard Herveille ////
//// richard@asics.ws ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
//// ////
//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
//// POSSIBILITY OF SUCH DAMAGE. ////
//// ////
/////////////////////////////////////////////////////////////////////
//
// NOTE: Read the pipeline information for the CMPS instruction
//
//
// Xilinx Virtex-E WC: 41 CLB slices @ 130MHz
//
// CVS Log
//
// $Id: oc54_cpu.v,v 1.1.1.1 2002/04/10 09:34:41 rherveille Exp $
//
// $Date: 2002/04/10 09:34:41 $
// $Revision: 1.1.1.1 $
// $Author: rherveille $
// $Locker: $
// $State: Exp $
//
// Change History:
// $Log: oc54_cpu.v,v $
// Revision 1.1.1.1 2002/04/10 09:34:41 rherveille
// Initial relase OpenCores54x DSP (CPU)
//
`include "timescale.v"
module oc54_cpu (
clk_i,
ena_mac_i, ena_alu_i, ena_bs_i, ena_exp_i,
ena_treg_i, ena_acca_i, ena_accb_i,
// mac
mac_sel_xm_i, mac_sel_ym_i, mac_sel_ya_i,
mac_xm_sx_i, mac_ym_sx_i, mac_add_sub_i,
// alu
alu_inst_i, alu_sel_i, alu_doublet_i,
// bs
bs_sel_i, bs_selo_i, l_na_i,
cssu_sel_i, is_cssu_i,
//
exp_sel_i, treg_sel_i,
acca_sel_i, accb_sel_i,
// common
pb_i, cb_i, db_i,
bp_a_i, bp_b_i,
ovm_i, frct_i, smul_i, sxm_i, c16_i, rnd_i,
c_i, tc_i,
asm_i, imm_i,
// outputs
c_alu_o, c_bs_o, tc_cssu_o, tc_alu_o,
ovf_a_o, zf_a_o, ovf_b_o, zf_b_o,
trn_o, eb_o
);
//
// parameters
//
//
// inputs & outputs
//
input clk_i;
input ena_mac_i, ena_alu_i, ena_bs_i, ena_exp_i;
input ena_treg_i, ena_acca_i, ena_accb_i;
input [ 1:0] mac_sel_xm_i, mac_sel_ym_i, mac_sel_ya_i;
input mac_xm_sx_i, mac_ym_sx_i, mac_add_sub_i;
input [ 6:0] alu_inst_i;
input [ 1:0] alu_sel_i;
input alu_doublet_i;
input [ 1:0] bs_sel_i, bs_selo_i;
input l_na_i;
input cssu_sel_i, is_cssu_i;
input exp_sel_i, treg_sel_i;
input [ 1:0] acca_sel_i, accb_sel_i;
input [15:0] pb_i, cb_i, db_i;
input bp_a_i, bp_b_i;
input ovm_i, frct_i, smul_i, sxm_i;
input c16_i, rnd_i, c_i, tc_i, asm_i, imm_i;
output c_alu_o, c_bs_o, tc_cssu_o, tc_alu_o;
output ovf_a_o, zf_a_o, ovf_b_o, zf_b_o;
output [15:0] trn_o, eb_o;
//
// variables
//
wire [39:0] acc_a, acc_b, bp_ar, bp_br;
wire [39:0] mac_result, alu_result, bs_result;
wire [15:0] treg;
wire [ 5:0] exp_result;
//
// module body
//
//
// instantiate MAC
oc54_mac cpu_mac(
.clk(clk_i), // clock input
.ena(ena_mac_i), // MAC clock enable input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.t(treg), // TREG input
.p(pb_i), // Program Data Bus input
.c(cb_i), // Coefficient Data Bus input
.d(db_i), // Data Bus input
.sel_xm(mac_sel_xm_i), // select multiplier-X input
.sel_ym(mac_sel_ym_i), // select muliplier-Y input
.sel_ya(mac_sel_ya_i), // select adder-Y input
.bp_a(bp_a_i), // bypass accumulator A select input
.bp_b(bp_b_i), // bypass accumulator B select input
.bp_ar(bp_ar), // bypass accumulator A input
.bp_br(bp_br), // bypass accumulator B input
.xm_s(mac_xm_sx_i), // sign extend multiplier x-input
.ym_s(mac_ym_sx_i), // sign extend multiplier y-input
.ovm(ovm_i), // overflow mode input
.frct(frct_i), // fractional mode input
.smul(smul_i), // saturate on multiply input
.add_sub(mac_add_sub_i), // add/subtract input
.result(mac_result) // MAC result output
);
//
// instantiate ALU
oc54_alu cpu_alu(
.clk(clk_i), // clock input
.ena(ena_alu_i), // ALU clock enable input
.inst(alu_inst_i), // ALU instruction
.seli(alu_sel_i), // ALU x-input select
.doublet(alu_doublet_i), // double t {treg, treg}
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.s(bs_result), // barrel shifter result input
.t(treg), // TREG input
.cb(cb_i), // Coefficient Data Bus input
.bp_a(bp_a_i), // bypass accumulator A select input
.bp_b(bp_b_i), // bypass accumulator B select input
.bp_ar(bp_ar), // bypass accumulator A input
.bp_br(bp_br), // bypass accumulator B input
.c16(c16_i), // c16 (double 16/long-word) input
.sxm(sxm_i), // sign extend mode input
.ci(c_i), // carry input
.tci(tc_i), // test/control flag input
.co(c_alu_o), // ALU carry output
.tco(tc_alu_o), // ALU test/control flag output
.result(alu_result) // ALU result output
);
//
// instantiate barrel shifter
oc54_bshft cpu_bs(
.clk(clk_i), // clock input
.ena(ena_bs_i), // BS clock enable input
.seli(bs_sel_i), // BS operand select input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.cb(cb_i), // Coefficient Data Bus input
.db(db_i), // Data Bus input
.bp_a(bp_a_i), // bypass accumulator A select input
.bp_b(bp_b_i), // bypass accumulator B select input
.bp_ar(bp_ar), // bypass accumulator A input
.bp_br(bp_br), // bypass accumulator B input
.selo(bs_selo_i), // BS operator select input
.t(treg), // TREG input
.asm(asm_i), // Accumulator Shift Mode input
.imm(imm_i), // Opcode Immediate input
.l_na(l_na_i), // BS logical/arithmetic shift mode input
.sxm(sxm_i), // sign extend mode input
.co(c_bs_o), // BS carry output (1 cycle ahead)
.result(bs_result) // BS result output
);
// instantiate Compare Select Store Unit
oc54_cssu cpu_cssu(
.clk(clk_i), // clock input
.ena(ena_bs_i), // BS/CSSU clock enable input
.sel_acc(cssu_sel_i), // CSSU accumulator select input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.s(bs_result), // BarrelShifter result input
.is_cssu(is_cssu_i), // CSSU/NormalShift operation
.tco(tc_cssu_o), // test/control flag output
.trn(trn_o), // Transition register output
.result(eb_o) // Result Data Bus output
);
//
// instantiate Exponent Encoder
oc54_exp cpu_exp_enc(
.clk(clk_i), // clock input
.ena(ena_exp_i), // Exponent Encoder clock enable input
.sel_acc(exp_sel_i), // ExpE. accumulator select input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.bp_a(bp_a_i), // bypass accumulator A select input
.bp_b(bp_b_i), // bypass accumulator B select input
.bp_ar(bp_ar), // bypass accumulator A input
.bp_br(bp_br), // bypass accumulator B input
.result(exp_result) // Exponent Encoder result output
);
//
// instantiate Temporary Register
oc54_treg cpu_treg(
.clk(clk_i), // clock input
.ena(ena_treg_i), // treg clock enable input
.we(1'b1), // treg write enable input
.seli(treg_sel_i), // treg select input
.exp(exp_result), // Exponent Encoder Result input
.d(db_i), // Data Bus input
.result(treg) // TREG
);
//
// instantiate accumulators
oc54_acc cpu_acc_a(
.clk(clk_i), // clock input
.ena(ena_acca_i), // accumulator A clock enable input
.seli(acca_sel_i), // accumulator A select input
.we(1'b1), // write enable input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.alu(alu_result), // ALU result input
.mac(mac_result), // MAC result input
.ovm(ovm_i), // overflow mode input
.rnd(rnd_i), // mac-rounding input
.zf(zf_a_o), // accumulator A zero flag output
.ovf(ovf_a_o), // accumulator A overflow flag output
.bp_result(bp_ar), // bypass accumulator A output
.result(acc_a) // accumulator A output
);
oc54_acc cpu_acc_b(
.clk(clk_i), // clock input
.ena(ena_accb_i), // accumulator B clock enable input
.seli(accb_sel_i), // accumulator B select input
.we(1'b1), // write enable input
.a(acc_a), // accumulator A input
.b(acc_b), // accumulator B input
.alu(alu_result), // ALU result input
.mac(mac_result), // MAC result input
.ovm(ovm_i), // overflow mode input
.rnd(rnd_i), // mac-rounding input
.zf(zf_b_o), // accumulator B zero flag output
.ovf(ovf_b_o), // accumulator B overflow flag output
.bp_result(bp_br), // bypass accumulator B output
.result(acc_b) // accumulator B output
);
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -