⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 md5.c

📁 r73模块的无线网卡在Linux下的驱动程序
💻 C
📖 第 1 页 / 共 3 页
字号:
                        ( FSb[ (uint8) ( RK[3] >>  8 ) ] << 16 ) ^                        ( FSb[ (uint8) ( RK[3]       ) ] <<  8 ) ^                        ( FSb[ (uint8) ( RK[3] >> 24 ) ]       );            RK[5]  = RK[1] ^ RK[4];            RK[6]  = RK[2] ^ RK[5];            RK[7]  = RK[3] ^ RK[6];        }        break;    case 192:        for( i = 0; i < 8; i++, RK += 6 )        {            RK[6]  = RK[0] ^ RCON[i] ^                        ( FSb[ (uint8) ( RK[5] >> 16 ) ] << 24 ) ^                        ( FSb[ (uint8) ( RK[5] >>  8 ) ] << 16 ) ^                        ( FSb[ (uint8) ( RK[5]       ) ] <<  8 ) ^                        ( FSb[ (uint8) ( RK[5] >> 24 ) ]       );            RK[7]  = RK[1] ^ RK[6];            RK[8]  = RK[2] ^ RK[7];            RK[9]  = RK[3] ^ RK[8];            RK[10] = RK[4] ^ RK[9];            RK[11] = RK[5] ^ RK[10];        }        break;    case 256:        for( i = 0; i < 7; i++, RK += 8 )        {            RK[8]  = RK[0] ^ RCON[i] ^                        ( FSb[ (uint8) ( RK[7] >> 16 ) ] << 24 ) ^                        ( FSb[ (uint8) ( RK[7] >>  8 ) ] << 16 ) ^                        ( FSb[ (uint8) ( RK[7]       ) ] <<  8 ) ^                        ( FSb[ (uint8) ( RK[7] >> 24 ) ]       );            RK[9]  = RK[1] ^ RK[8];            RK[10] = RK[2] ^ RK[9];            RK[11] = RK[3] ^ RK[10];            RK[12] = RK[4] ^                        ( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^                        ( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^                        ( FSb[ (uint8) ( RK[11] >>  8 ) ] <<  8 ) ^                        ( FSb[ (uint8) ( RK[11]       ) ]       );            RK[13] = RK[5] ^ RK[12];            RK[14] = RK[6] ^ RK[13];            RK[15] = RK[7] ^ RK[14];        }        break;    }    /* setup decryption round keys */    if( KT_init )    {        for( i = 0; i < 256; i++ )        {            KT0[i] = RT0[ FSb[i] ];            KT1[i] = RT1[ FSb[i] ];            KT2[i] = RT2[ FSb[i] ];            KT3[i] = RT3[ FSb[i] ];        }        KT_init = 0;    }    SK = ctx->drk;    *SK++ = *RK++;    *SK++ = *RK++;    *SK++ = *RK++;    *SK++ = *RK++;    for( i = 1; i < ctx->nr; i++ )    {        RK -= 8;        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^                KT1[ (uint8) ( *RK >> 16 ) ] ^                KT2[ (uint8) ( *RK >>  8 ) ] ^                KT3[ (uint8) ( *RK       ) ]; RK++;        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^                KT1[ (uint8) ( *RK >> 16 ) ] ^                KT2[ (uint8) ( *RK >>  8 ) ] ^                KT3[ (uint8) ( *RK       ) ]; RK++;        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^                KT1[ (uint8) ( *RK >> 16 ) ] ^                KT2[ (uint8) ( *RK >>  8 ) ] ^                KT3[ (uint8) ( *RK       ) ]; RK++;        *SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^                KT1[ (uint8) ( *RK >> 16 ) ] ^                KT2[ (uint8) ( *RK >>  8 ) ] ^                KT3[ (uint8) ( *RK       ) ]; RK++;    }    RK -= 8;    *SK++ = *RK++;    *SK++ = *RK++;    *SK++ = *RK++;    *SK++ = *RK++;    return( 0 );}/* AES 128-bit block encryption routine */void aes_encrypt(aes_context *ctx, uint8 input[16], uint8 output[16] ){    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;    RK = ctx->erk;    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \{                                               \    RK += 4;                                    \                                                \    X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^  \                 FT1[ (uint8) ( Y1 >> 16 ) ] ^  \                 FT2[ (uint8) ( Y2 >>  8 ) ] ^  \                 FT3[ (uint8) ( Y3       ) ];   \                                                \    X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^  \                 FT1[ (uint8) ( Y2 >> 16 ) ] ^  \                 FT2[ (uint8) ( Y3 >>  8 ) ] ^  \                 FT3[ (uint8) ( Y0       ) ];   \                                                \    X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^  \                 FT1[ (uint8) ( Y3 >> 16 ) ] ^  \                 FT2[ (uint8) ( Y0 >>  8 ) ] ^  \                 FT3[ (uint8) ( Y1       ) ];   \                                                \    X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^  \                 FT1[ (uint8) ( Y0 >> 16 ) ] ^  \                 FT2[ (uint8) ( Y1 >>  8 ) ] ^  \                 FT3[ (uint8) ( Y2       ) ];   \}    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */    AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */    AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */    if( ctx->nr > 10 )    {        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */    }    if( ctx->nr > 12 )    {        AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */    }    /* last round */    RK += 4;    X0 = RK[0] ^ ( FSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^                 ( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^                 ( FSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^                 ( FSb[ (uint8) ( Y3       ) ]       );    X1 = RK[1] ^ ( FSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^                 ( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^                 ( FSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^                 ( FSb[ (uint8) ( Y0       ) ]       );    X2 = RK[2] ^ ( FSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^                 ( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^                 ( FSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^                 ( FSb[ (uint8) ( Y1       ) ]       );    X3 = RK[3] ^ ( FSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^                 ( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^                 ( FSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^                 ( FSb[ (uint8) ( Y2       ) ]       );    PUT_UINT32( X0, output,  0 );    PUT_UINT32( X1, output,  4 );    PUT_UINT32( X2, output,  8 );    PUT_UINT32( X3, output, 12 );}/* AES 128-bit block decryption routine */void aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] ){    uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;    RK = ctx->drk;    GET_UINT32( X0, input,  0 ); X0 ^= RK[0];    GET_UINT32( X1, input,  4 ); X1 ^= RK[1];    GET_UINT32( X2, input,  8 ); X2 ^= RK[2];    GET_UINT32( X3, input, 12 ); X3 ^= RK[3];#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \{                                               \    RK += 4;                                    \                                                \    X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^  \                 RT1[ (uint8) ( Y3 >> 16 ) ] ^  \                 RT2[ (uint8) ( Y2 >>  8 ) ] ^  \                 RT3[ (uint8) ( Y1       ) ];   \                                                \    X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^  \                 RT1[ (uint8) ( Y0 >> 16 ) ] ^  \                 RT2[ (uint8) ( Y3 >>  8 ) ] ^  \                 RT3[ (uint8) ( Y2       ) ];   \                                                \    X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^  \                 RT1[ (uint8) ( Y1 >> 16 ) ] ^  \                 RT2[ (uint8) ( Y0 >>  8 ) ] ^  \                 RT3[ (uint8) ( Y3       ) ];   \                                                \    X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^  \                 RT1[ (uint8) ( Y2 >> 16 ) ] ^  \                 RT2[ (uint8) ( Y1 >>  8 ) ] ^  \                 RT3[ (uint8) ( Y0       ) ];   \}    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 1 */    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 2 */    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 3 */    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 4 */    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 5 */    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 6 */    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 7 */    AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );       /* round 8 */    AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );       /* round 9 */    if( ctx->nr > 10 )    {        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 10 */        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 11 */    }    if( ctx->nr > 12 )    {        AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );   /* round 12 */        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );   /* round 13 */    }    /* last round */    RK += 4;    X0 = RK[0] ^ ( RSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^                 ( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^                 ( RSb[ (uint8) ( Y2 >>  8 ) ] <<  8 ) ^                 ( RSb[ (uint8) ( Y1       ) ]       );    X1 = RK[1] ^ ( RSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^                 ( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^                 ( RSb[ (uint8) ( Y3 >>  8 ) ] <<  8 ) ^                 ( RSb[ (uint8) ( Y2       ) ]       );    X2 = RK[2] ^ ( RSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^                 ( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^                 ( RSb[ (uint8) ( Y0 >>  8 ) ] <<  8 ) ^                 ( RSb[ (uint8) ( Y3       ) ]       );    X3 = RK[3] ^ ( RSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^                 ( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^                 ( RSb[ (uint8) ( Y1 >>  8 ) ] <<  8 ) ^                 ( RSb[ (uint8) ( Y0       ) ]       );    PUT_UINT32( X0, output,  0 );    PUT_UINT32( X1, output,  4 );    PUT_UINT32( X2, output,  8 );    PUT_UINT32( X3, output, 12 );}void hmac_sha1(unsigned char *text, int text_len, unsigned char *key, int key_len, unsigned char *digest){    SHA_CTX context;    unsigned char k_ipad[65]; /* inner padding - key XORd with ipad */    unsigned char k_opad[65]; /* outer padding - key XORd with opad */    int i;    /* if key is longer than 64 bytes reset it to key=SHA1(key) */    if (key_len > 64)    {        SHA_CTX tctx;        SHAInit(&tctx);        SHAUpdate(&tctx, key, key_len);        SHAFinal(&tctx, key);        key_len = 20;    }    /*    * the HMAC_SHA1 transform looks like:    *    * SHA1(K XOR opad, SHA1(K XOR ipad, text))    *    * where K is an n byte key    * ipad is the byte 0x36 repeated 64 times    * opad is the byte 0x5c repeated 64 times    * and text is the data being protected    */    /* start out by storing key in pads */    memset(k_ipad, 0, sizeof k_ipad);    memset(k_opad, 0, sizeof k_opad);    memcpy(k_ipad, key, key_len);    memcpy(k_opad, key, key_len);    /* XOR key with ipad and opad values */    for (i = 0; i < 64; i++)    {        k_ipad[i] ^= 0x36;        k_opad[i] ^= 0x5c;    }    /* perform inner SHA1*/    SHAInit(&context); /* init context for 1st pass */    SHAUpdate(&context, k_ipad, 64); /* start with inner pad */    SHAUpdate(&context, text, text_len); /* then text of datagram */    SHAFinal(&context, digest); /* finish up 1st pass */    /* perform outer SHA1 */    SHAInit(&context); /* init context for 2nd pass */    SHAUpdate(&context, k_opad, 64); /* start with outer pad */    SHAUpdate(&context, digest, 20); /* then results of 1st hash */    SHAFinal(&context, digest); /* finish up 2nd pass */}/** F(P, S, c, i) = U1 xor U2 xor ... Uc* U1 = PRF(P, S || Int(i))* U2 = PRF(P, U1)* Uc = PRF(P, Uc-1)*/void F(char *password, unsigned char *ssid, int ssidlength, int iterations, int count, unsigned char *output){    unsigned char digest[36], digest1[SHA_DIGEST_LEN];    int i, j;    /* U1 = PRF(P, S || int(i)) */    memcpy(digest, ssid, ssidlength);    digest[ssidlength] = (unsigned char)((count>>24) & 0xff);    digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff);    digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff);    digest[ssidlength+3] = (unsigned char)(count & 0xff);    hmac_sha1(digest, ssidlength+4, (unsigned char*) password, (int) strlen(password), digest1); // for WPA update    /* output = U1 */    memcpy(output, digest1, SHA_DIGEST_LEN);    for (i = 1; i < iterations; i++)    {        /* Un = PRF(P, Un-1) */        hmac_sha1(digest1, SHA_DIGEST_LEN, (unsigned char*) password, (int) strlen(password), digest); // for WPA update        memcpy(digest1, digest, SHA_DIGEST_LEN);        /* output = output xor Un */        for (j = 0; j < SHA_DIGEST_LEN; j++)        {            output[j] ^= digest[j];        }    }}/** password - ascii string up to 63 characters in length* ssid - octet string up to 32 octets* ssidlength - length of ssid in octets* output must be 40 octets in length and outputs 256 bits of key*/int PasswordHash(char *password, unsigned char *ssid, int ssidlength, unsigned char *output){    if ((strlen(password) > 63) || (ssidlength > 32))        return 0;    F(password, ssid, ssidlength, 4096, 1, output);    F(password, ssid, ssidlength, 4096, 2, &output[SHA_DIGEST_LEN]);    return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -