📄 adfknc.m
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 程序运行过程中调用:dddd函数(其中用到编写DFKNC时,所用到的距离函数d),这个函数计算在本聚类模式下的两个模糊数的距离 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ADFKNC(c,mm,x,e,a,B)%其中,e表示预设的阈值;c类,mm表示模糊关系数,
%x为待聚类的模糊数据矩阵,每一行表示一个模糊数(依次为中心,左区间长和右区间长);a,B分别充当lambda和rho的角色
n=size(x);
n=n(1); %求出x的模糊数的个数n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 判断类别数是不是大于数据个数 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if c>n
fprintf('ERROR! The number of clusters is greater than the number of the data, namely %d>%d. Please revise your cluster number!\n',c,n)
else
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 声明变量空间
% b:为在这种计算模式下的参数
% u:为初始关系矩阵
% uu:为经优化后的关系矩阵
% xx:为所有所有数据的相应的平均值
% m:为数据点的中心向量(由于这里研究的只是一维情况,所以其只能形成向量)
% l:为数据点的左区间长向量
% r:为数据点的右区间长向量
% M:为初始聚类的中心向量
% L:为初始聚类的左区间长向量
% R:为初始聚类的右区间长向量
% MM:为优化后聚类的中心向量
% LL:为优化后聚类的左区间长向量
% RR:为优化后聚类的右区间长向量
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
b=0;
xx=sum(x)/n;
for i=1:n
b=b+d(x(i,:),xx,a,B)*d(x(i,:),xx,a,B);
end
b=n/b;
u=ones(c,n)/n;
uu=ones(c,n);
m=ones(1,n);
l=ones(1,n);
r=ones(1,n);
M=ones(1,c);
L=ones(1,c);
R=ones(1,c);
MM=ones(1,c);
LL=ones(1,c);
RR=ones(1,c);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 初始赋值
% 第一部分,将x分为中心,左区间长和区间长,分别赋值给m,l和r向量
% 第二部分,选取k个聚类中心,和区间长。不妨取为前k个元素,其中为了计算需要对中心做一个平移变换
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:n %第一部分
m(i)=x(i,1);
l(i)=x(i,2);
r(i)=x(i,3);
end
for i=1:c %第二部分
M(i)=x(i,1)-0.1;
L(i)=x(i,2)-0.1;
R(i)=x(i,3)-0.1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 计算部分
% 第三部分,计算优化后的关系矩阵uu。其中用到的算法是根据论文中提供的方法。
% 第四部分,计算优化后的聚类中心和区间长度矩阵。其中用到的算法是根据论文中提供的方法。
% 第五部分,赋值给center,其中center为输出量,其包括各个聚类的最终中心,左区间长和右区间长
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dd=ones(1,c);
for j=1:n %第三部分
for i=1:c
dd(i)=1/(dddd([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B,b)^(2/(mm-1)));
end
for i=1:c
uu(i,j)=1/(dddd([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B,b)^(2/(mm-1))*sum(dd));
end
dd=ones(1,c);
end
for i=1:c %第四部分
MM(i)=0;
LL(i)=0;
RR(i)=0;
division=0;
for j=1:n
MM(i)=MM(i)+(uu(i,j).^mm)*(3*m(j)-a*(l(j)-L(i))+B*(r(j)-R(i)))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
LL(i)=LL(i)+(uu(i,j).^mm)*(M(i)+a*l(j)-m(j))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
RR(i)=RR(i)+(uu(i,j).^mm)*(m(j)+B*r(j)-M(i))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
division=division+(uu(i,j).^mm)*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
end
MM(i)=MM(i)/(3*division);
LL(i)=LL(i)/(a*division);
RR(i)=RR(i)/(B*division);
end
center(:,1)=MM(:); %第五部分
center(:,2)=LL(:);
center(:,3)=RR(:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 进入循环项:若u和uu相应元素的差的最大值大于预设阈值e,则进入循环
% 将新算出的结果赋给就变量,重新计算相应的关系矩阵uu直到循环条件不被满足,跳出循环。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while max(max(abs(u-uu)))>e
u=uu;
M(:)=MM(:);
L(:)=LL(:);
R(:)=RR(:);
dd=ones(1,c);
for j=1:n %第六部分
for i=1:c
dd(i)=1/(dddd([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B,b)^(2/(mm-1)));
end
for i=1:c
uu(i,j)=1/(dddd([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B,b)^(2/(mm-1))*sum(dd));
end
dd=ones(1,c);
end
for i=1:c %第七部分
MM(i)=0;
LL(i)=0;
RR(i)=0;
division=0;
for j=1:n
MM(i)=MM(i)+(uu(i,j).^mm)*(3*m(j)-a*(l(j)-L(i))+B*(r(j)-R(i)))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
LL(i)=LL(i)+(uu(i,j).^mm)*(M(i)+a*l(j)-m(j))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
RR(i)=RR(i)+(uu(i,j).^mm)*(m(j)+B*r(j)-M(i))*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
division=division+(uu(i,j).^mm)*exp(-b*d([M(i),L(i),R(i)],[m(j),l(j),r(j)],a,B)^2);
end
MM(i)=MM(i)/(3*division);
LL(i)=LL(i)/(a*division);
RR(i)=RR(i)/(B*division);
end
center(:,1)=MM(:); %第九部分
center(:,2)=LL(:);
center(:,3)=RR(:);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 输出计算的结果,分别为聚类中心和关系矩阵
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('The centers of the %d clustering is:\n',c)
center
fprintf('The membership of the elements relating to the %d clusters is:\n',c)
uu=uu'
fprintf('The graph has shown the result of the clustering, in which the red point is the center of the clusters.\n')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 作图,上面一张图表示原始数据(这里的隶属函数都认为是三角关系);第二张图为各类的模糊数据 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subplot(2,1,1)
hold on
for i=1:n
plot([m(i)-l(i),m(i),m(i)+r(i)],[0,1,0]);
end
hold off
title('The figure of the original data')
subplot(2,1,2)
hold on
for i=1:c
plot([MM(i)-LL(i),MM(i),MM(i)+RR(i)],[0,1,0]);
end
title('The centers and spreads of the cluters')
hold off
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -