⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gspx-pxa.c

📁 Wince BSP 下的Wifi 驱动 基于PXA270 CPU
💻 C
📖 第 1 页 / 共 5 页
字号:
	pHC->read_desc = (DMADescriptorChannelType *) HalAllocateCommonBuffer(&Adapter, sizeof(DMADescriptorChannelType)*2, &PA, FALSE);
    if (pHC->read_desc) {
        pHC->read_desc_phys_addr = (DMADescriptorChannelType *) PA.LowPart;
    }

	pHC->write_desc = (DMADescriptorChannelType *) HalAllocateCommonBuffer(&Adapter, sizeof(DMADescriptorChannelType)*2, &PA, FALSE);
    if (pHC->write_desc) {
        pHC->write_desc_phys_addr = (DMADescriptorChannelType *) PA.LowPart;
    }

	pHC->rw_desc = (DMADescriptorChannelType *) HalAllocateCommonBuffer(&Adapter, sizeof(DMADescriptorChannelType)*2, &PA, FALSE);
    if (pHC->rw_desc) {
        pHC->rw_desc_phys_addr = (DMADescriptorChannelType *) PA.LowPart;
    }
#endif ///(USE_DMA == 1)
	///Allocate I/O buffers
	pHC->iodata = (PBYTE) HalAllocateCommonBuffer(&Adapter, PXA_SSP_IODATA_SIZE, &PA, FALSE);
    if (pHC->iodata) {
		pHC->phys_addr = (PBYTE)PA.LowPart;
    }

	pHC->iorw = (PBYTE) HalAllocateCommonBuffer(&Adapter, PXA_SSP_IODATA_SIZE, &PA, FALSE);
    if (pHC->iorw) {
		pHC->phys_addr_rw = (PBYTE)PA.LowPart;
    }

///#if (USE_DMA == 1)
	///Get the DMA channel

	///==============================================================
	///Initialize the DMA channel parameters
	pHC->DMAParam[RDDMA_PARAM].pDMARegs = pHC->pDMARegs;
	pHC->DMAParam[RDDMA_PARAM].channel = DMA_CH_READ;
	if(!(pHC->DMAParam[RDDMA_PARAM].dmaWaitObj = CreateEvent( NULL, FALSE, FALSE,NULL))) {
        GSPIMSG(ERRMSG, (TEXT("Init rddmaWaitObj, CreateEvent FAILED")));
		result = -1;
        goto errFuncRet;
    }

	pHC->DMAParam[WTDMA_PARAM].pDMARegs = pHC->pDMARegs;
	pHC->DMAParam[WTDMA_PARAM].channel = DMA_CH_RW;
	if(!(pHC->DMAParam[WTDMA_PARAM].dmaWaitObj = CreateEvent( NULL, FALSE, FALSE,NULL))) {
        GSPIMSG(ERRMSG, (TEXT("Init wtdmaWaitObj, CreateEvent FAILED")));
		result = -1;
        goto errFuncRet;
    }

	if(DMA_CHMAP_SSP_RX > 63)
	 {
		pHC->pDMARegs->drcmr2[DMA_CHMAP_SSP_RX - 64] = pHC->DMAParam[RDDMA_PARAM].channel | DRCMR_MAPVAL; 
	 }else
	 {
		pHC->pDMARegs->drcmr[DMA_CHMAP_SSP_RX] = pHC->DMAParam[RDDMA_PARAM].channel | DRCMR_MAPVAL; 
	 }

	if(DMA_CHMAP_SSP_TX > 63)
	{
		pHC->pDMARegs->drcmr2[DMA_CHMAP_SSP_TX - 64] = pHC->DMAParam[WTDMA_PARAM].channel | DRCMR_MAPVAL;  
	}else
	{
		pHC->pDMARegs->drcmr[DMA_CHMAP_SSP_TX] = pHC->DMAParam[WTDMA_PARAM].channel | DRCMR_MAPVAL;  
	}
	///==============================================================
	/// Request the DMA IRQ
	#if (USE_DMA == 1) && (USE_DMAIRQ == 1)
	pHC->hBusAcceHND = CreateBusAccessHandle( pg_szActiveKey );
	{
		int i;
		for (i=0 ; i<MAXDMA_PARAM ; i++) {
			pHC->DMAIntrInfo[i].irq = IRQ_DMAC;
			pHC->DMAIntrInfo[i].pIstFunc = (MYISTFUNC) dma_ist;
			pHC->DMAIntrInfo[i].param = (LPVOID)&pHC->DMAParam[i];
			pHC->DMAIntrInfo[i].IntrMask = 0x04;

			if (!BusTransBusAddrToStatic(pHC->hBusAcceHND, Internal, 0, DCSRAddr[i], sizeof(DWORD), &inIoSpace, &pHC->DMAIntrInfo[i].IntrRgPhysAddr)) {
				GSPIMSG(ERRMSG, (TEXT("installISR: Failed TransBusAddrToStatic - (read)\r\n")));
			}
			///RETAILMSG(1, (TEXT("installISR: PhysAddr: %xh\r\n"), pHC->DMAIntrInfo[i].IntrRgPhysAddr));
			///Initialize the interrupt, IST 
			setupInterrupt(&pHC->DMAIntrInfo[i]);
			///Load the ISR
			installISR(&pHC->DMAIntrInfo[i]);
		}
	}
	#endif ///USE_DMAIRQ

///#endif ///USE_DMA
#if (USE_DMA == 1)
	///
	///Configure the DMA descriptor
	{
		union DMACmdReg CmdBuff;
		volatile DMADescriptorChannelType*	descPt;

	    // set CMD values with bit fields.
		//
		CmdBuff.DcmdReg.len        = 0;		 // length of the memory buffer
		CmdBuff.DcmdReg.width      = 0x2;    // binary 10 (see quick Quick Reference sheet to DMA programming in the cotulla EAS)
		CmdBuff.DcmdReg.size       = 0x1;    // binary 01
		CmdBuff.DcmdReg.endian     = 0;      // little endian
		CmdBuff.DcmdReg.flybyt     = 0;      // Flowthrough
		CmdBuff.DcmdReg.flybys     = 0;      // Flowthrough
		CmdBuff.DcmdReg.endirqen   = 0;      // 1 means Interrupt when decrement length = 0;
		CmdBuff.DcmdReg.startirqen = 0;      // 1 means Interrupt when the desc is loaded
		CmdBuff.DcmdReg.flowtrg    = 0;      // 1 means the target is an external peripheral
		CmdBuff.DcmdReg.flowsrc    = 1;      // 1 means the source is an external peripheral (and needs flow control)
		CmdBuff.DcmdReg.inctrgadd  = 1;      // 1 means increment the target address (since it's memory)
		CmdBuff.DcmdReg.incsrcadd  = 0;      // 1 means increment the source address (since it's a peripheral)

		descPt = pHC->read_desc;
		descPt->ddadr = (UINT32)(pHC->read_desc_phys_addr + 1);
		descPt->dsadr = (UINT32)(&(phySSPBase->base.ssdr));
		descPt->dtadr = (UINT32) (pHC->phys_addr);
		descPt->dcmd  = CmdBuff.DcmdDword;                     // size and cmd values of the RcvA buffer
		///====================================================================
		// set CMD values with bit fields.
		//
		CmdBuff.DcmdReg.len        = 0;		 // length of the memory buffer
		CmdBuff.DcmdReg.width      = 0x2;    // binary 10 (see quick Quick Reference sheet to DMA programming in the cotulla EAS)
		CmdBuff.DcmdReg.size       = 0x1;    // binary 01
		CmdBuff.DcmdReg.endian     = 0;      // little endian
		CmdBuff.DcmdReg.flybyt     = 0;      // Flowthrough
		CmdBuff.DcmdReg.flybys     = 0;      // Flowthrough
		CmdBuff.DcmdReg.endirqen   = 0;      // 1 means Interrupt when decrement length = 0;
		CmdBuff.DcmdReg.startirqen = 0;      // 1 means Interrupt when the desc is loaded
		CmdBuff.DcmdReg.flowtrg    = 1;      // 1 means the target is an external peripheral
		CmdBuff.DcmdReg.flowsrc    = 0;      // 1 means the source is an external peripheral (and needs flow control)
		CmdBuff.DcmdReg.inctrgadd  = 0;      // 1 means increment the target address (since it's memory)
		CmdBuff.DcmdReg.incsrcadd  = 1;      // 1 means increment the source address (since it's a peripheral)

		descPt = pHC->write_desc;
		///descPt->ddadr = (UINT32)(pHC->write_desc_phys_addr + sizeof(DMADescriptorChannelType));
		descPt->ddadr = (UINT32)(pHC->write_desc_phys_addr + 1);
		descPt->dsadr = (UINT32) (pHC->phys_addr);

		///descPt->dtadr = (UINT32)(&(pHC->pSSPRegs->base.ssdr));
		descPt->dtadr = (UINT32)(&(phySSPBase->base.ssdr));
		
		descPt->dcmd  = CmdBuff.DcmdDword;                     // size and cmd values of the RcvA buffer

		///====================================================================
		// set CMD values with bit fields.
		//
		CmdBuff.DcmdReg.len        = 0;		 // length of the memory buffer
		CmdBuff.DcmdReg.width      = 0x2;    // binary 10 (see quick Quick Reference sheet to DMA programming in the cotulla EAS)
		CmdBuff.DcmdReg.size       = 0x1;    // binary 01
		CmdBuff.DcmdReg.endian     = 0;      // little endian
		CmdBuff.DcmdReg.flybyt     = 0;      // Flowthrough
		CmdBuff.DcmdReg.flybys     = 0;      // Flowthrough
		CmdBuff.DcmdReg.endirqen   = 0;      // 1 means Interrupt when decrement length = 0;
		CmdBuff.DcmdReg.startirqen = 0;      // 1 means Interrupt when the desc is loaded
		CmdBuff.DcmdReg.flowtrg    = 1;      // 1 means the target is an external peripheral
		CmdBuff.DcmdReg.flowsrc    = 0;      // 1 means the source is an external peripheral (and needs flow control)
		CmdBuff.DcmdReg.inctrgadd  = 0;      // 1 means increment the target address (since it's memory)
		CmdBuff.DcmdReg.incsrcadd  = 1;      // 1 means increment the source address (since it's a peripheral)

		descPt = pHC->rw_desc;
		descPt->ddadr = (UINT32)(pHC->rw_desc_phys_addr + 1);
		descPt->dsadr = (UINT32) (pHC->phys_addr_rw);
		descPt->dtadr = (UINT32)(&(phySSPBase->base.ssdr));
		descPt->dcmd  = CmdBuff.DcmdDword;                     // size and cmd values of the RcvA buffer

	}
#endif ///(USE_DMA == 1)
	memset(pHC->iorw, 0xff, sizeof(PXA_SSP_IODATA_SIZE));

	return result;
errFuncRet:
	return result;
}

VOID	dma_deinit(PSSP_HARDWARE_CONTEXT	pDC)
{
	PSSP_HARDWARE_CONTEXT	pHC = (PSSP_HARDWARE_CONTEXT)pDC;
	PHYSICAL_ADDRESS	PA = {0};

	CloseHandle(pHC->DMAParam[RDDMA_PARAM].dmaWaitObj);
	CloseHandle(pHC->DMAParam[WTDMA_PARAM].dmaWaitObj);
	
    	if(pHC->iodata != NULL)
	{
		HalFreeCommonBuffer(NULL,PXA_SSP_IODATA_SIZE, PA, pHC->iodata, FALSE);
	}
	if(pHC->iorw != NULL)
	{
		HalFreeCommonBuffer(NULL,PXA_SSP_IODATA_SIZE, PA, pHC->iorw, FALSE);
	}
	return;
}


///
/// ssp_init_hw: Initialize the H/W
/// Input: 
///		pHC - Hard context
///	Output:
///		None
///	Return:
///		None
void ssp_init_hw(PSSP_HARDWARE_CONTEXT	pHC)
{
	PHYSICAL_ADDRESS	Bulverde_GPIO_Base = {BULVERDE_BASE_REG_PA_GPIO};
	PHYSICAL_ADDRESS	Bulverde_SSP_Base = {SSPREG_PHY_BASE};
	PHYSICAL_ADDRESS	Bulverde_CLKMGR_Base = {BULVERDE_BASE_REG_PA_CLKMGR};
	PHYSICAL_ADDRESS	Bulverde_DMA_Base = {BULVERDE_BASE_REG_PA_DMAC};
	PHYSICAL_ADDRESS	Bulverde_PA_OTS_Base = {BULVERDE_BASE_REG_PA_OST};
	PHYSICAL_ADDRESS	Bulverde_ICR_Base = {BULVERDE_BASE_REG_PA_INTC};


	pHC->pGPIORegs = (BULVERDE_GPIO_REG*)MmMapIoSpace(Bulverde_GPIO_Base, sizeof(BULVERDE_GPIO_REG), FALSE);
	if (!pHC->pGPIORegs) {
		GSPIMSG(ERRMSG, (TEXT("Error in allocating GPIO register\n")));
		goto funcFinal;
	}
	
	pHC->pSSPRegs = (BULVERDE_SSP_EXT_REG*)MmMapIoSpace(Bulverde_SSP_Base, sizeof(BULVERDE_SSP_EXT_REG), FALSE);
	if (!pHC->pSSPRegs) {
		GSPIMSG(ERRMSG, (TEXT("Error in allocating SSP register\n")));
		goto funcFinal;
	}
	
	pHC->pCLKRegs = (BULVERDE_CLKMGR_REG*)MmMapIoSpace(Bulverde_CLKMGR_Base, sizeof(BULVERDE_CLKMGR_REG), FALSE);
	if (!pHC->pCLKRegs) {
		GSPIMSG(ERRMSG, (TEXT("Error in allocating CLK register\n")));
		goto funcFinal;
	}

	pHC->pDMARegs = (BULVERDE_DMA_REG*)MmMapIoSpace(Bulverde_DMA_Base, sizeof(BULVERDE_DMA_REG), FALSE);
	if (!pHC->pDMARegs) {
		GSPIMSG(ERRMSG, (TEXT("Error in allocating DMA register\n")));
		goto funcFinal;
	}

	pHC->pOSTRegs = (BULVERDE_OST_REG*)MmMapIoSpace(Bulverde_PA_OTS_Base, sizeof(BULVERDE_OST_REG), FALSE);
	if (!pHC->pOSTRegs) {
		GSPIMSG(ERRMSG, (TEXT("Error in allocating OST register\n")));
		goto funcFinal;
	}

	///
	///Configure the GPIO 
	///
	set_GPIO_mode(pHC->pGPIORegs, SSP_SCLK|SSPSCLK_ATTR);				///SCLK
	set_GPIO_mode(pHC->pGPIORegs, SSP_SFRM|SSPSFRM_ATTR);				///SFRM

	set_GPIO_mode(pHC->pGPIORegs, SSP_RST|SSPRESET_ATTR);
	set_GPIO_mode(pHC->pGPIORegs, SSP_TX|SSPTX_ATTR);					///TX
	set_GPIO_mode(pHC->pGPIORegs, SSP_RX|SSPRX_ATTR);					///RX
#ifdef USE_TEST_PIN
	set_GPIO_mode(pHC->pGPIORegs, SSP_TST1|SSPTST1_ATTR);
	set_GPIO_mode(pHC->pGPIORegs, SSP_TST2|SSPTST2_ATTR);
#endif
	set_GPIO_signal(pHC->pGPIORegs, SSP_SFRM, SIG_UP); 
     
	set_GPIO_signal(pHC->pGPIORegs, SSP_RST, SIG_UP); 
     
     
	pHC->pSSPRegs->base.sscr0 = 0;
	pHC->pSSPRegs->base.sscr1 = 0;

	Sleep(0);        //JKU
	///
	/// Configure the SSP CLK
	///
#if (SSPCTRLER == 1)					///Using SSP controller1
	pHC->pCLKRegs->cken |= (1<<23);
#elif (SSPCTRLER == 2)					///Using SSP controller2
	pHC->pCLKRegs->cken |= (1<<3);
#elif (SSPCTRLER == 3)					///Using SSP controller3
	pHC->pCLKRegs->cken |= (1<<4);
#endif ///SSPCTRLER

	pHC->pSSPRegs->base.sscr0 = SSCR0_SCR(clkdiv) | SSCR0_DSS(0x000f) | SSCR0_FRF(3);
	pHC->pSSPRegs->base.sscr1 = SSCR1_TTELP | SSCR1_TTE | SSCR1_TSRE | SSCR1_RSRE |
			SSCR1_RFT(0x1) | SSCR1_TFT(0x1) | SSCR1_TRAIL;


	pHC->pSSPRegs->sspsp = SSPSP_SCMODE(0);
	pHC->pSSPRegs->ssto = 1;
	pHC->pSSPRegs->base.sscr0 |= SSCR0_SSE;

	intr_init(pHC);
	dma_init(pHC);

funcFinal:
	return;
}


void	ssp_deinit_hw(PSSP_HARDWARE_CONTEXT	pDC)
{
	PSSP_HARDWARE_CONTEXT	pHC = (PSSP_HARDWARE_CONTEXT)pDC;

//	if (pHC->hIntrHandle == NULL) {
//		SetEvent(pHC->hIntrHandle);
//		pHC->hIntrHandle = NULL;
//	}

	dma_deinit(pHC);
	intr_deinit(pHC);
	
	if(pHC->pGPIORegs != NULL)
	{
		MmUnmapIoSpace((IN PVOID)pHC->pGPIORegs, sizeof(BULVERDE_GPIO_REG));
	}
	if(pHC->pSSPRegs != NULL)
	{
		MmUnmapIoSpace((IN PVOID)pHC->pSSPRegs, sizeof(BULVERDE_SSP_EXT_REG));
	}
	if(pHC->pCLKRegs != NULL)
	{
		MmUnmapIoSpace((IN PVOID)pHC->pCLKRegs, sizeof(BULVERDE_CLKMGR_REG));
	}
	if(pHC->pDMARegs != NULL)
	{
		MmUnmapIoSpace((IN PVOID)pHC->pDMARegs, sizeof(BULVERDE_DMA_REG));
	}
	if(pHC->pOSTRegs != NULL)
	{
		MmUnmapIoSpace((IN PVOID)pHC->pOSTRegs, sizeof(BULVERDE_OST_REG));
	}

	return;

}

DWORD pxa_gspi_register_isr(PVOID ssphc, void* Adapter, ISRFUNC isrFunc)
{
	PSSP_HARDWARE_CONTEXT	pHC = (PSSP_HARDWARE_CONTEXT)ssphc;
	DWORD					result = -1;
	if ((pHC == NULL) || (Adapter == NULL) || (isrFunc == NULL)) {
		goto funcFinal;
	}
	pHC->isrContext = (HANDLE) Adapter;
	pHC->isrFunc = isrFunc;
	result = 0;

funcFinal:
	return result;
}

///////////////////////////////////////////////////////////////////////////////
///	SSP_Init - the init entry point
/// Input: 
///		dwContext - the context for this init 
///	Output:
///	Return: instance context
///		- Returns a DWORD which will be passed to Open & Deinit or NULL if
///          unable to initialize the device
///////////////////////////////////////////////////////////////////////////////
PVOID pxa_gspi_Init(void)
{
	PSSP_HARDWARE_CONTEXT	pHC = NULL;
	ENTERFUNC();
#if (USE_DMA == 1)
	GSPIMSG(1, (TEXT("GSPX - Using DMA mode\n")));
#else
	GSPIMSG(1, (TEXT("GSPX - Using CPU mode\n\n")));
#endif ///USE_DMA
	pHC = LocalAlloc(LPTR, sizeof(SSP_HARDWARE_CONTEXT));

	if (pHC == NULL) {
		GSPIMSG(ERRMSG, (TEXT("Allocate SSP_HARDWARE_CONTEXT FAILED")));
		goto funcFinal;
	}
#ifdef USE_TEST_PIN
	pLocalHC =pHC;
#endif
	///Initialize the member of SSP_HARDWARE_CONTEXT
	InitializeCriticalSection(&(pHC->SSPCrit));


	ssp_init_hw(pHC);
	gspx_power_up(pHC);
	gspx_reset_module(pHC);

	if(!(pHC->waitqueue = CreateEvent( NULL, FALSE, FALSE,NULL))) {
        GSPIMSG(ERRMSG, (TEXT("Init CreateEvent FAILED")));
        goto funcFinal;
    }

	///crlo:verion-check ++
	///GSPI8385: (0004, 0013)
	///GSPI8686: (000b, 0010)
	{
		WORD	regval;
#if defined (GSPI8385)
		const WORD	chipid = 0x0004;
#elif defined (GSPI8686)
		const WORD	chipid = 0x000b;
#else
		const WORD	chipid = 0x000;
#endif ///GSPI$(CHIPID)
		ssp_read_register((PVOID)pHC, &regval, 0x02);
		GSPIMSG(1, (TEXT("Reg(0x02)= 0x%04x\r\n"), regval));

		///================================================
		if (chipid != regval){
			GSPIMSG(1, (TEXT("Chip(exp, val)= (%04xh), %04xh)\n"), chipid, regval));
			gspx_deinit(pHC);
			pHC = NULL;
			goto funcFinal;
		}
	}
	///crlo:verion-check --

	pHC->DriverShutdown = FALSE;
	///Testing....

funcFinal:
	GSPIMSG(PROGFLOW, (TEXT("SSP: %s returning 0x%x\r\n"), TEXT(__FUNCTION__), pHC));
	return pHC;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -