📄 disasm.c
字号:
/* disasm.c where all the _work_ gets done in the Netwide Disassembler
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*
* initial version 27/iii/95 by Simon Tatham
*/
#include "compiler.h"
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <inttypes.h>
#include "nasm.h"
#include "disasm.h"
#include "sync.h"
#include "insns.h"
#include "names.c"
/*
* Flags that go into the `segment' field of `insn' structures
* during disassembly.
*/
#define SEG_RELATIVE 1
#define SEG_32BIT 2
#define SEG_RMREG 4
#define SEG_DISP8 8
#define SEG_DISP16 16
#define SEG_DISP32 32
#define SEG_NODISP 64
#define SEG_SIGNED 128
#define SEG_64BIT 256
#include "regdis.c"
/*
* Prefix information
*/
struct prefix_info {
uint8_t osize; /* Operand size */
uint8_t asize; /* Address size */
uint8_t osp; /* Operand size prefix present */
uint8_t asp; /* Address size prefix present */
uint8_t rep; /* Rep prefix present */
uint8_t seg; /* Segment override prefix present */
uint8_t lock; /* Lock prefix present */
uint8_t rex; /* Rex prefix present */
};
#define getu8(x) (*(uint8_t *)(x))
#if defined(__i386__) || defined(__x86_64__)
/* Littleendian CPU which can handle unaligned references */
#define getu16(x) (*(uint16_t *)(x))
#define getu32(x) (*(uint32_t *)(x))
#define getu64(x) (*(uint64_t *)(x))
#else
static uint16_t getu16(uint8_t *data)
{
return (uint16_t)data[0] + ((uint16_t)data[1] << 8);
}
static uint32_t getu32(uint8_t *data)
{
return (uint32_t)getu16(data) + ((uint32_t)getu16(data+2) << 16);
}
static uint64_t getu64(uint8_t *data)
{
return (uint64_t)getu32(data) + ((uint64_t)getu32(data+4) << 32);
}
#endif
#define gets8(x) ((int8_t)getu8(x))
#define gets16(x) ((int16_t)getu16(x))
#define gets32(x) ((int32_t)getu32(x))
#define gets64(x) ((int64_t)getu64(x))
/* Important: regval must already have been adjusted for rex extensions */
static enum reg_enum whichreg(int32_t regflags, int regval, int rex)
{
if (!(regflags & (REGISTER|REGMEM)))
return 0; /* Registers not permissible?! */
regflags |= REGISTER;
if (!(REG_AL & ~regflags))
return R_AL;
if (!(REG_AX & ~regflags))
return R_AX;
if (!(REG_EAX & ~regflags))
return R_EAX;
if (!(REG_RAX & ~regflags))
return R_RAX;
if (!(REG_DL & ~regflags))
return R_DL;
if (!(REG_DX & ~regflags))
return R_DX;
if (!(REG_EDX & ~regflags))
return R_EDX;
if (!(REG_RDX & ~regflags))
return R_RDX;
if (!(REG_CL & ~regflags))
return R_CL;
if (!(REG_CX & ~regflags))
return R_CX;
if (!(REG_ECX & ~regflags))
return R_ECX;
if (!(REG_RCX & ~regflags))
return R_RCX;
if (!(FPU0 & ~regflags))
return R_ST0;
if (!(REG_CS & ~regflags))
return (regval == 1) ? R_CS : 0;
if (!(REG_DESS & ~regflags))
return (regval == 0 || regval == 2
|| regval == 3 ? rd_sreg[regval] : 0);
if (!(REG_FSGS & ~regflags))
return (regval == 4 || regval == 5 ? rd_sreg[regval] : 0);
if (!(REG_SEG67 & ~regflags))
return (regval == 6 || regval == 7 ? rd_sreg[regval] : 0);
/* All the entries below look up regval in an 16-entry array */
if (regval < 0 || regval > 15)
return 0;
if (!(REG8 & ~regflags)) {
if (rex & REX_P)
return rd_reg8_rex[regval];
else
return rd_reg8[regval];
}
if (!(REG16 & ~regflags))
return rd_reg16[regval];
if (!(REG32 & ~regflags))
return rd_reg32[regval];
if (!(REG64 & ~regflags))
return rd_reg64[regval];
if (!(REG_SREG & ~regflags))
return rd_sreg[regval & 7]; /* Ignore REX */
if (!(REG_CREG & ~regflags))
return rd_creg[regval];
if (!(REG_DREG & ~regflags))
return rd_dreg[regval];
if (!(REG_TREG & ~regflags)) {
if (rex & REX_P)
return 0; /* TR registers are ill-defined with rex */
return rd_treg[regval];
}
if (!(FPUREG & ~regflags))
return rd_fpureg[regval & 7]; /* Ignore REX */
if (!(MMXREG & ~regflags))
return rd_mmxreg[regval & 7]; /* Ignore REX */
if (!(XMMREG & ~regflags))
return rd_xmmreg[regval];
return 0;
}
static const char *whichcond(int condval)
{
static int conds[] = {
C_O, C_NO, C_C, C_NC, C_Z, C_NZ, C_NA, C_A,
C_S, C_NS, C_PE, C_PO, C_L, C_NL, C_NG, C_G
};
return conditions[conds[condval]];
}
/*
* Process a DREX suffix
*/
static uint8_t *do_drex(uint8_t *data, insn *ins)
{
uint8_t drex = *data++;
operand *dst = &ins->oprs[ins->drexdst];
if ((drex & 8) != ((ins->rex & REX_OC) ? 8 : 0))
return NULL; /* OC0 mismatch */
ins->rex = (ins->rex & ~7) | (drex & 7);
dst->segment = SEG_RMREG;
dst->basereg = drex >> 4;
return data;
}
/*
* Process an effective address (ModRM) specification.
*/
static uint8_t *do_ea(uint8_t *data, int modrm, int asize,
int segsize, operand * op, insn *ins)
{
int mod, rm, scale, index, base;
int rex;
uint8_t sib = 0;
mod = (modrm >> 6) & 03;
rm = modrm & 07;
if (mod != 3 && rm == 4 && asize != 16)
sib = *data++;
if (ins->rex & REX_D) {
data = do_drex(data, ins);
if (!data)
return NULL;
}
rex = ins->rex;
if (mod == 3) { /* pure register version */
op->basereg = rm+(rex & REX_B ? 8 : 0);
op->segment |= SEG_RMREG;
return data;
}
op->addr_size = 0;
op->eaflags = 0;
if (asize == 16) {
/*
* <mod> specifies the displacement size (none, byte or
* word), and <rm> specifies the register combination.
* Exception: mod=0,rm=6 does not specify [BP] as one might
* expect, but instead specifies [disp16].
*/
op->indexreg = op->basereg = -1;
op->scale = 1; /* always, in 16 bits */
switch (rm) {
case 0:
op->basereg = R_BX;
op->indexreg = R_SI;
break;
case 1:
op->basereg = R_BX;
op->indexreg = R_DI;
break;
case 2:
op->basereg = R_BP;
op->indexreg = R_SI;
break;
case 3:
op->basereg = R_BP;
op->indexreg = R_DI;
break;
case 4:
op->basereg = R_SI;
break;
case 5:
op->basereg = R_DI;
break;
case 6:
op->basereg = R_BP;
break;
case 7:
op->basereg = R_BX;
break;
}
if (rm == 6 && mod == 0) { /* special case */
op->basereg = -1;
if (segsize != 16)
op->addr_size = 16;
mod = 2; /* fake disp16 */
}
switch (mod) {
case 0:
op->segment |= SEG_NODISP;
break;
case 1:
op->segment |= SEG_DISP8;
op->offset = (int8_t)*data++;
break;
case 2:
op->segment |= SEG_DISP16;
op->offset = *data++;
op->offset |= ((unsigned)*data++) << 8;
break;
}
return data;
} else {
/*
* Once again, <mod> specifies displacement size (this time
* none, byte or *dword*), while <rm> specifies the base
* register. Again, [EBP] is missing, replaced by a pure
* disp32 (this time that's mod=0,rm=*5*) in 32-bit mode,
* and RIP-relative addressing in 64-bit mode.
*
* However, rm=4
* indicates not a single base register, but instead the
* presence of a SIB byte...
*/
int a64 = asize == 64;
op->indexreg = -1;
if (a64)
op->basereg = rd_reg64[rm | ((rex & REX_B) ? 8 : 0)];
else
op->basereg = rd_reg32[rm | ((rex & REX_B) ? 8 : 0)];
if (rm == 5 && mod == 0) {
if (segsize == 64) {
op->eaflags |= EAF_REL;
op->segment |= SEG_RELATIVE;
mod = 2; /* fake disp32 */
}
if (asize != 64)
op->addr_size = asize;
op->basereg = -1;
mod = 2; /* fake disp32 */
}
if (rm == 4) { /* process SIB */
scale = (sib >> 6) & 03;
index = (sib >> 3) & 07;
base = sib & 07;
op->scale = 1 << scale;
if (index == 4)
op->indexreg = -1; /* ESP/RSP/R12 cannot be an index */
else if (a64)
op->indexreg = rd_reg64[index | ((rex & REX_X) ? 8 : 0)];
else
op->indexreg = rd_reg64[index | ((rex & REX_X) ? 8 : 0)];
if (base == 5 && mod == 0) {
op->basereg = -1;
mod = 2; /* Fake disp32 */
} else if (a64)
op->basereg = rd_reg64[base | ((rex & REX_B) ? 8 : 0)];
else
op->basereg = rd_reg32[base | ((rex & REX_B) ? 8 : 0)];
if (segsize != 32)
op->addr_size = 32;
}
switch (mod) {
case 0:
op->segment |= SEG_NODISP;
break;
case 1:
op->segment |= SEG_DISP8;
op->offset = gets8(data);
data++;
break;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -