📄 traversal.pm
字号:
}
sub postorder {
my $self = shift;
$self->_order( 'postorder' );
}
sub unseen {
my $self = shift;
values %{ $self->{ unseen } };
}
sub seen {
my $self = shift;
values %{ $self->{ seen } };
}
sub seeing {
my $self = shift;
@{ $self->{ order } };
}
sub roots {
my $self = shift;
@{ $self->{ roots } };
}
sub is_root {
my ($self, $v) = @_;
for my $u (@{ $self->{ roots } }) {
return 1 if $u eq $v;
}
return 0;
}
sub tree {
my $self = shift;
$self->{ tree };
}
sub graph {
my $self = shift;
$self->{ graph };
}
sub vertex_by_postorder {
my ($self, $i) = @_;
exists $self->{ postorder } && $self->{ postorder }->[ $i ];
}
sub postorder_by_vertex {
my ($self, $v) = @_;
exists $self->{ postordern } && $self->{ postordern }->{ $v };
}
sub postorder_vertices {
my ($self, $v) = @_;
exists $self->{ postordern } ? %{ $self->{ postordern } } : ();
}
sub vertex_by_preorder {
my ($self, $i) = @_;
exists $self->{ preorder } && $self->{ preorder }->[ $i ];
}
sub preorder_by_vertex {
my ($self, $v) = @_;
exists $self->{ preordern } && $self->{ preordern }->{ $v };
}
sub preorder_vertices {
my ($self, $v) = @_;
exists $self->{ preordern } ? %{ $self->{ preordern } } : ();
}
sub has_state {
my ($self, $var) = @_;
exists $self->{ state } && exists $self->{ state }->{ $var };
}
sub get_state {
my ($self, $var) = @_;
exists $self->{ state } ? $self->{ state }->{ $var } : undef;
}
sub set_state {
my ($self, $var, $val) = @_;
$self->{ state }->{ $var } = $val;
return 1;
}
sub delete_state {
my ($self, $var) = @_;
delete $self->{ state }->{ $var };
delete $self->{ state } unless keys %{ $self->{ state } };
return 1;
}
1;
__END__
=pod
=head1 NAME
Graph::Traversal - traverse graphs
=head1 SYNOPSIS
Don't use Graph::Traversal directly, use Graph::Traversal::DFS
or Graph::Traversal::BFS instead.
use Graph;
my $g = Graph->new;
$g->add_edge(...);
use Graph::Traversal::...;
my $t = Graph::Traversal::...->new(%opt);
$t->...
=head1 DESCRIPTION
You can control how the graph is traversed by the various callback
parameters in the C<%opt>. In the parameters descriptions below the
$u and $v are vertices, and the $self is the traversal object itself.
=head2 Callback parameters
The following callback parameters are available:
=over 4
=item tree_edge
Called when traversing an edge that belongs to the traversal tree.
Called with arguments ($u, $v, $self).
=item non_tree_edge
Called when an edge is met which either leads back to the traversal tree
(either a C<back_edge>, a C<down_edge>, or a C<cross_edge>).
Called with arguments ($u, $v, $self).
=item pre_edge
Called for edges in preorder.
Called with arguments ($u, $v, $self).
=item post_edge
Called for edges in postorder.
Called with arguments ($u, $v, $self).
=item back_edge
Called for back edges.
Called with arguments ($u, $v, $self).
=item down_edge
Called for down edges.
Called with arguments ($u, $v, $self).
=item cross_edge
Called for cross edges.
Called with arguments ($u, $v, $self).
=item pre
=item pre_vertex
Called for vertices in preorder.
Called with arguments ($v, $self).
=item post
=item post_vertex
Called for vertices in postorder.
Called with arguments ($v, $self).
=item first_root
Called when choosing the first root (start) vertex for traversal.
Called with arguments ($self, $unseen) where $unseen is a hash
reference with the unseen vertices as keys.
=item next_root
Called when choosing the next root (after the first one) vertex for
traversal (useful when the graph is not connected). Called with
arguments ($self, $unseen) where $unseen is a hash reference with
the unseen vertices as keys. If you want only the first reachable
subgraph to be processed, set the next_root to C<undef>.
=item start
Identical to defining C<first_root> and undefining C<next_root>.
=item next_alphabetic
Set this to true if you want the vertices to be processed in
alphabetic order (and leave first_root/next_root undefined).
=item next_numeric
Set this to true if you want the vertices to be processed in
numeric order (and leave first_root/next_root undefined).
=item next_successor
Called when choosing the next vertex to visit. Called with arguments
($self, $next) where $next is a hash reference with the possible
next vertices as keys. Use this to provide a custom ordering for
choosing vertices, as opposed to C<next_numeric> or C<next_alphabetic>.
=back
The parameters C<first_root> and C<next_successor> have a 'hierarchy'
of how they are determined: if they have been explicitly defined, use
that value. If not, use the value of C<next_alphabetic>, if that has
been defined. If not, use the value of C<next_numeric>, if that has
been defined. If not, the next vertex to be visited is chose randomly.
=head2 Methods
The following methods are available:
=over 4
=item unseen
Return the unseen vertices in random order.
=item seen
Return the seen vertices in random order.
=item seeing
Return the active fringe vertices in random order.
=item preorder
Return the vertices in preorder traversal order.
=item postorder
Return the vertices in postorder traversal order.
=item vertex_by_preorder
$v = $t->vertex_by_preorder($i)
Return the ith (0..$V-1) vertex by preorder.
=item preorder_by_vertex
$i = $t->preorder_by_vertex($v)
Return the preorder index (0..$V-1) by vertex.
=item vertex_by_postorder
$v = $t->vertex_by_postorder($i)
Return the ith (0..$V-1) vertex by postorder.
=item postorder_by_vertex
$i = $t->postorder_by_vertex($v)
Return the postorder index (0..$V-1) by vertex.
=item preorder_vertices
Return a hash with the vertices as the keys and their preorder indices
as the values.
=item postorder_vertices
Return a hash with the vertices as the keys and their postorder
indices as the values.
=item tree
Return the traversal tree as a graph.
=item has_state
$t->has_state('s')
Test whether the traversal has state 's' attached to it.
=item get_state
$t->get_state('s')
Get the state 's' attached to the traversal (C<undef> if none).
=item set_state
$t->set_state('s', $s)
Set the state 's' attached to the traversal.
=item delete_state
$t->delete_state('s')
Delete the state 's' from the traversal.
=back
=head2 Backward compatibility
The following parameters are for backward compatibility to Graph 0.2xx:
=over 4
=item get_next_root
Like C<next_root>.
=item successor
Identical to having C<tree_edge> both C<non_tree_edge> defined
to be the same.
=item unseen_successor
Like C<tree_edge>.
=item seen_successor
Like C<seed_edge>.
=back
=head2 Special callbacks
If in a callback you call the special C<terminate> method,
the traversal is terminated, no more vertices are traversed.
=head1 SEE ALSO
L<Graph::Traversal::DFS>, L<Graph::Traversal::BFS>
=head1 AUTHOR AND COPYRIGHT
Jarkko Hietaniemi F<jhi@iki.fi>
=head1 LICENSE
This module is licensed under the same terms as Perl itself.
=cut
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -