⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 div_ext.c

📁 操作系统源代码
💻 C
字号:
/*  (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.  See the copyright notice in the ACK home directory, in the file "Copyright".*//* $Header: div_ext.c,v 1.10 93/01/05 12:04:47 ceriel Exp $ *//*	DIVIDE EXTENDED FORMAT*/#include "FP_bias.h"#include "FP_trap.h"#include "FP_types.h"/*	November 15, 1984	This is a routine to do the work.	There are two versions: 	One is based on the partial products method	and makes no use possible machine instructions	to divide (hardware dividers).	The other is used when USE_DIVIDE is defined. It is much faster on	machines with fast 4 byte operations.*//********************************************************/voiddiv_ext(e1,e2)EXTEND	*e1,*e2;{	short	error = 0;	B64		result;	register	unsigned long	*lp;#ifndef USE_DIVIDE	short	count;#else	unsigned short u[9], v[5];	register int j;	register unsigned short *u_p = u;	int maxv = 4;#endif	if ((e2->m1 | e2->m2) == 0) {                /*                 * Exception 8.2 - Divide by zero                 */		trap(EFDIVZ);		e1->m1 = e1->m2 = 0L;		e1->exp = EXT_MAX;		return;	}	if ((e1->m1 | e1->m2) == 0) {	/* 0 / anything == 0 */		e1->exp = 0;	/* make sure */		return;	}#ifndef USE_DIVIDE	/*	 * numbers are right shifted one bit to make sure	 * that m1 is quaranteed to be larger if its	 * maximum bit is set	 */	b64_rsft(&e1->mantissa);	/* 64 bit shift right */	b64_rsft(&e2->mantissa);	/* 64 bit shift right */	e1->exp++;	e2->exp++;#endif	/*	check for underflow, divide by zero, etc	*/	e1->sign ^= e2->sign;	e1->exp -= e2->exp;#ifndef USE_DIVIDE		/* do division of mantissas	*/		/* uses partial product method	*/		/* init control variables	*/	count = 64;	result.h_32 = 0L;	result.l_32 = 0L;		/* partial product division loop */	while (count--)	{		/* first left shift result 1 bit	*/		/* this is ALWAYS done			*/		b64_lsft(&result);		/* compare dividend and divisor		*/		/* if dividend >= divisor add a bit	*/		/* and subtract divisior from dividend	*/		if ( (e1->m1 < e2->m1) ||			((e1->m1 == e2->m1) && (e1->m2 < e2->m2) ))			;	/* null statement */				/* i.e., don't add or subtract */		else	{			result.l_32++;	/* ADD	*/			if (e2->m2 > e1->m2)				e1->m1 -= 1;	/* carry in */			e1->m1 -= e2->m1;	/* do SUBTRACTION */			e1->m2 -= e2->m2;	/*    SUBTRACTION */		}		/*	shift dividend left one bit OR	*/		/*	IF it equals ZERO we can break out	*/		/*	of the loop, but still must shift	*/		/*	the quotient the remaining count bits	*/		/* NB	save the results of this test in error	*/		/*	if not zero, then the result is inexact. */		/* 	this would be reported in IEEE standard	*/		/*	lp points to dividend			*/		lp = &e1->m1;		error = ((*lp | *(lp+1)) != 0L) ? 1 : 0;		if (error)	{	/* more work */			/*	assume max bit == 0 (see above)	*/			b64_lsft(&e1->mantissa);			continue;		}		else			break;	/* leave loop	*/	}	/* end of divide by subtraction loop	*/	if (count > 0)	{		lp = &result.h_32;		if (count > 31) {	/* move to higher word */			*lp = *(lp+1);			count -= 32;			*(lp+1) = 0L;	/* clear low word	*/		}		if (*lp)			*lp <<= count;	/* shift rest of way	*/		lp++;	/*  == &result.l_32	*/		if (*lp) {			result.h_32 |= (*lp >> 32-count);			*lp <<= count;		}	}#else /* USE_DIVIDE */	u[4] = (e1->m2 & 1) << 15;	b64_rsft(&(e1->mantissa));	u[0] = e1->m1 >> 16;	u[1] = e1->m1;	u[2] = e1->m2 >> 16;	u[3] = e1->m2;	u[5] = 0; u[6] = 0; u[7] = 0;	v[1] = e2->m1 >> 16;	v[2] = e2->m1;	v[3] = e2->m2 >> 16;	v[4] = e2->m2;	while (! v[maxv]) maxv--;	result.h_32 = 0;	result.l_32 = 0;	lp = &result.h_32;	/*	 * Use an algorithm of Knuth (The art of programming, Seminumerical	 * algorithms), to divide u by v. u and v are both seen as numbers	 * with base 65536. 	 */	for (j = 0; j <= 3; j++, u_p++) {		unsigned long q_est, temp;		if (j == 2) lp++;		if (u_p[0] == 0 && u_p[1] < v[1]) continue;		temp = ((unsigned long)u_p[0] << 16) + u_p[1];		if (u_p[0] >= v[1]) {			q_est = 0x0000FFFFL;		}		else {			q_est = temp / v[1];		}		temp -= q_est * v[1];		while (temp < 0x10000 && v[2]*q_est > ((temp<<16)+u_p[2])) {			q_est--;			temp += v[1];		}		/*	Now, according to Knuth, we have an estimate of the			quotient, that is either correct or one too big, but			almost always correct.		*/		if (q_est != 0)  {			int i;			unsigned long k = 0;			int borrow = 0;			for (i = maxv; i > 0; i--) {				unsigned long tmp = q_est * v[i] + k + borrow;				unsigned short md = tmp;				borrow = (md > u_p[i]);				u_p[i] -= md;				k = tmp >> 16;			}			k += borrow;			borrow = u_p[0] < k;			u_p[0] -= k;			if (borrow) {				/* So, this does not happen often; the estimate				   was one too big; correct this				*/				*lp |= (j & 1) ? (q_est - 1) : ((q_est-1)<<16);				borrow = 0;				for (i = maxv; i > 0; i--) {					unsigned long tmp 					    = v[i]+(unsigned long)u_p[i]+borrow;										u_p[i] = tmp;					borrow = tmp >> 16;				}				u_p[0] += borrow;			}			else *lp |= (j & 1) ? q_est : (q_est<<16);		}	}#ifdef	EXCEPTION_INEXACT	u_p = &u[0];	for (j = 7; j >= 0; j--) {		if (*u_p++) {			error = 1;			break;		}	}#endif#endif#ifdef  EXCEPTION_INEXACT        if (error)      {                /*                 * report here exception 8.5 - Inexact                 * from Draft 8.0 of IEEE P754:                 * In the absence of an invalid operation exception,                 * if the rounded result of an operation is not exact or if                 * it overflows without a trap, then the inexact exception                 * shall be assigned. The rounded or overflowed result                 * shall be delivered to the destination.                 */                INEXACT();#endif	e1->mantissa = result;	nrm_ext(e1);	if (e1->exp < EXT_MIN)	{		/*		 * Exception 8.4 - Underflow		 */		trap(EFUNFL);	/* underflow */		e1->exp = EXT_MIN;		e1->m1 = e1->m2 = 0L;		return;	}	if (e1->exp >= EXT_MAX) {                /*                 * Exception 8.3 - Overflow                 */                trap(EFOVFL);   /* overflow */                e1->exp = EXT_MAX;                e1->m1 = e1->m2 = 0L;                return;        }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -