📄 number.c
字号:
min_len = MIN (n1->n_len, n2->n_len); min_scale = MIN (n1->n_scale, n2->n_scale); diff = new_num (diff_len, diff_scale); /* Initialize the subtract. */ n1ptr = (char *) (n1->n_value + n1->n_len + n1->n_scale -1); n2ptr = (char *) (n2->n_value + n2->n_len + n2->n_scale -1); diffptr = (char *) (diff->n_value + diff_len + diff_scale -1); /* Subtract the numbers. */ borrow = 0; /* Take care of the longer scaled number. */ if (n1->n_scale != min_scale) { /* n1 has the longer scale */ for (count = n1->n_scale - min_scale; count > 0; count--) *diffptr-- = *n1ptr--; } else { /* n2 has the longer scale */ for (count = n2->n_scale - min_scale; count > 0; count--) { val = - *n2ptr-- - borrow; if (val < 0) { val += 10; borrow = 1; } else borrow = 0; *diffptr-- = val; } } /* Now do the equal length scale and integer parts. */ for (count = 0; count < min_len + min_scale; count++) { val = *n1ptr-- - *n2ptr-- - borrow; if (val < 0) { val += 10; borrow = 1; } else borrow = 0; *diffptr-- = val; } /* If n1 has more digits then n2, we now do that subtract. */ if (diff_len != min_len) { for (count = diff_len - min_len; count > 0; count--) { val = *n1ptr-- - borrow; if (val < 0) { val += 10; borrow = 1; } else borrow = 0; *diffptr-- = val; } } /* Clean up and return. */ _rm_leading_zeros (diff); return diff;}/* Here is the full add routine that takes care of negative numbers. N1 is added to N2 and the result placed into RESULT. */voidbc_add ( n1, n2, result) bc_num n1, n2, *result;{ bc_num sum; int cmp_res; if (n1->n_sign == n2->n_sign) { sum = _do_add (n1, n2); sum->n_sign = n1->n_sign; } else { /* subtraction must be done. */ cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */ switch (cmp_res) { case -1: /* n1 is less than n2, subtract n1 from n2. */ sum = _do_sub (n2, n1); sum->n_sign = n2->n_sign; break; case 0: /* They are equal! return zero! */ sum = copy_num (_zero_); break; case 1: /* n2 is less than n1, subtract n2 from n1. */ sum = _do_sub (n1, n2); sum->n_sign = n1->n_sign; } } /* Clean up and return. */ free_num (result); *result = sum;}/* Here is the full subtract routine that takes care of negative numbers. N2 is subtracted from N1 and the result placed in RESULT. */voidbc_sub ( n1, n2, result) bc_num n1, n2, *result;{ bc_num diff; int cmp_res; if (n1->n_sign != n2->n_sign) { diff = _do_add (n1, n2); diff->n_sign = n1->n_sign; } else { /* subtraction must be done. */ cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */ switch (cmp_res) { case -1: /* n1 is less than n2, subtract n1 from n2. */ diff = _do_sub (n2, n1); diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS); break; case 0: /* They are equal! return zero! */ diff = copy_num (_zero_); break; case 1: /* n2 is less than n1, subtract n2 from n1. */ diff = _do_sub (n1, n2); diff->n_sign = n1->n_sign; break; } } /* Clean up and return. */ free_num (result); *result = diff;}/* The multiply routine. N2 time N1 is put int PROD with the scale of the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)). */voidbc_multiply (n1, n2, prod, scale) bc_num n1, n2, *prod; int scale;{ bc_num pval; /* For the working storage. */ char *n1ptr, *n2ptr, *pvptr; /* Work pointers. */ char *n1end, *n2end; /* To the end of n1 and n2. */ int indx; int len1, len2, total_digits; long sum; int full_scale, prod_scale; int toss; /* Initialize things. */ len1 = n1->n_len + n1->n_scale; len2 = n2->n_len + n2->n_scale; total_digits = len1 + len2; full_scale = n1->n_scale + n2->n_scale; prod_scale = MIN(full_scale,MAX(scale,MAX(n1->n_scale,n2->n_scale))); toss = full_scale - prod_scale; pval = new_num (total_digits-full_scale, prod_scale); pval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS ); n1end = (char *) (n1->n_value + len1 - 1); n2end = (char *) (n2->n_value + len2 - 1); pvptr = (char *) (pval->n_value + total_digits - toss - 1); sum = 0; /* Here are the loops... */ for (indx = 0; indx < toss; indx++) { n1ptr = (char *) (n1end - MAX(0, indx-len2+1)); n2ptr = (char *) (n2end - MIN(indx, len2-1)); while ((n1ptr >= n1->n_value) && (n2ptr <= n2end)) sum += *n1ptr-- * *n2ptr++; sum = sum / 10; } for ( ; indx < total_digits-1; indx++) { n1ptr = (char *) (n1end - MAX(0, indx-len2+1)); n2ptr = (char *) (n2end - MIN(indx, len2-1)); while ((n1ptr >= n1->n_value) && (n2ptr <= n2end)) sum += *n1ptr-- * *n2ptr++; *pvptr-- = sum % 10; sum = sum / 10; } *pvptr-- = sum; /* Assign to prod and clean up the number. */ free_num (prod); *prod = pval; _rm_leading_zeros (*prod); if (is_zero (*prod)) (*prod)->n_sign = PLUS;}/* Some utility routines for the divide: First a one digit multiply. NUM (with SIZE digits) is multiplied by DIGIT and the result is placed into RESULT. It is written so that NUM and RESULT can be the same pointers. */static void_one_mult (num, size, digit, result) unsigned char *num; int size, digit; unsigned char *result;{ int carry, value; unsigned char *nptr, *rptr; if (digit == 0) memset (result, 0, size); else { if (digit == 1) memcpy (result, num, size); else { /* Initialize */ nptr = (unsigned char *) (num+size-1); rptr = (unsigned char *) (result+size-1); carry = 0; while (size-- > 0) { value = *nptr-- * digit + carry; *rptr-- = value % 10; carry = value / 10; } if (carry != 0) *rptr = carry; } }}/* The full division routine. This computes N1 / N2. It returns 0 if the division is ok and the result is in QUOT. The number of digits after the decimal point is SCALE. It returns -1 if division by zero is tried. The algorithm is found in Knuth Vol 2. p237. */intbc_divide (n1, n2, quot, scale) bc_num n1, n2, *quot; int scale;{ bc_num qval; unsigned char *num1, *num2; unsigned char *ptr1, *ptr2, *n2ptr, *qptr; int scale1, val; unsigned int len1, len2, scale2, qdigits, extra, count; unsigned int qdig, qguess, borrow, carry; unsigned char *mval; char zero; unsigned int norm; /* Test for divide by zero. */ if (is_zero (n2)) return -1; /* Test for divide by 1. If it is we must truncate. */ if (n2->n_scale == 0) { if (n2->n_len == 1 && *n2->n_value == 1) { qval = new_num (n1->n_len, scale); qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS); memset (&qval->n_value[n1->n_len],0,scale); memcpy (qval->n_value, n1->n_value, n1->n_len + MIN(n1->n_scale,scale)); free_num (quot); *quot = qval; } } /* Set up the divide. Move the decimal point on n1 by n2's scale. Remember, zeros on the end of num2 are wasted effort for dividing. */ scale2 = n2->n_scale; n2ptr = (unsigned char *) n2->n_value+n2->n_len+scale2-1; while ((scale2 > 0) && (*n2ptr-- == 0)) scale2--; len1 = n1->n_len + scale2; scale1 = n1->n_scale - scale2; if (scale1 < scale) extra = scale - scale1; else extra = 0; num1 = (unsigned char *) malloc (n1->n_len+n1->n_scale+extra+2); if (num1 == NULL) out_of_memory(); memset (num1, 0, n1->n_len+n1->n_scale+extra+2); memcpy (num1+1, n1->n_value, n1->n_len+n1->n_scale); len2 = n2->n_len + scale2; num2 = (unsigned char *) malloc (len2+1); if (num2 == NULL) out_of_memory(); memcpy (num2, n2->n_value, len2); *(num2+len2) = 0; n2ptr = num2; while (*n2ptr == 0) { n2ptr++; len2--; } /* Calculate the number of quotient digits. */ if (len2 > len1+scale) { qdigits = scale+1; zero = TRUE; } else { zero = FALSE; if (len2>len1) qdigits = scale+1; /* One for the zero integer part. */ else qdigits = len1-len2+scale+1; } /* Allocate and zero the storage for the quotient. */ qval = new_num (qdigits-scale,scale); memset (qval->n_value, 0, qdigits); /* Allocate storage for the temporary storage mval. */ mval = (unsigned char *) malloc (len2+1); if (mval == NULL) out_of_memory (); /* Now for the full divide algorithm. */ if (!zero) { /* Normalize */ norm = 10 / ((int)*n2ptr + 1); if (norm != 1) { _one_mult (num1, len1+scale1+extra+1, norm, num1); _one_mult (n2ptr, len2, norm, n2ptr); } /* Initialize divide loop. */ qdig = 0; if (len2 > len1) qptr = (unsigned char *) qval->n_value+len2-len1; else qptr = (unsigned char *) qval->n_value; /* Loop */ while (qdig <= len1+scale-len2) { /* Calculate the quotient digit guess. */ if (*n2ptr == num1[qdig]) qguess = 9; else qguess = (num1[qdig]*10 + num1[qdig+1]) / *n2ptr; /* Test qguess. */ if (n2ptr[1]*qguess > (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10 + num1[qdig+2]) { qguess--; /* And again. */ if (n2ptr[1]*qguess > (num1[qdig]*10 + num1[qdig+1] - *n2ptr*qguess)*10 + num1[qdig+2]) qguess--; } /* Multiply and subtract. */ borrow = 0; if (qguess != 0) { *mval = 0; _one_mult (n2ptr, len2, qguess, mval+1); ptr1 = (unsigned char *) num1+qdig+len2; ptr2 = (unsigned char *) mval+len2; for (count = 0; count < len2+1; count++) { val = (int) *ptr1 - (int) *ptr2-- - borrow; if (val < 0) { val += 10; borrow = 1; } else borrow = 0; *ptr1-- = val; } } /* Test for negative result. */ if (borrow == 1) { qguess--; ptr1 = (unsigned char *) num1+qdig+len2; ptr2 = (unsigned char *) n2ptr+len2-1; carry = 0; for (count = 0; count < len2; count++) { val = (int) *ptr1 + (int) *ptr2-- + carry; if (val > 9) { val -= 10; carry = 1; } else carry = 0; *ptr1-- = val; } if (carry == 1) *ptr1 = (*ptr1 + 1) % 10; } /* We now know the quotient digit. */ *qptr++ = qguess; qdig++; } } /* Clean up and return the number. */ qval->n_sign = ( n1->n_sign == n2->n_sign ? PLUS : MINUS ); if (is_zero (qval)) qval->n_sign = PLUS; _rm_leading_zeros (qval); free_num (quot); *quot = qval; /* Clean up temporary storage. */ free (mval); free (num1); free (num2); return 0; /* Everything is OK. */}/* Modulo for numbers. This computes NUM1 % NUM2 and puts the result in RESULT. */intbc_modulo (num1, num2, result, scale) bc_num num1, num2, *result; int scale;{ bc_num temp; int rscale;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -