📄 zd_rf_uw2453.c
字号:
/* zd_rf_uw2453.c: Functions for the UW2453 RF controller * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */#include <linux/kernel.h>#include "zd_rf.h"#include "zd_usb.h"#include "zd_chip.h"/* This RF programming code is based upon the code found in v2.16.0.0 of the * ZyDAS vendor driver. Unlike other RF's, Ubec publish full technical specs * for this RF on their website, so we're able to understand more than * usual as to what is going on. Thumbs up for Ubec for doing that. *//* The 3-wire serial interface provides access to 8 write-only registers. * The data format is a 4 bit register address followed by a 20 bit value. */#define UW2453_REGWRITE(reg, val) ((((reg) & 0xf) << 20) | ((val) & 0xfffff))/* For channel tuning, we have to configure registers 1 (synthesizer), 2 (synth * fractional divide ratio) and 3 (VCO config). * * We configure the RF to produce an interrupt when the PLL is locked onto * the configured frequency. During initialization, we run through a variety * of different VCO configurations on channel 1 until we detect a PLL lock. * When this happens, we remember which VCO configuration produced the lock * and use it later. Actually, we use the configuration *after* the one that * produced the lock, which seems odd, but it works. * * If we do not see a PLL lock on any standard VCO config, we fall back on an * autocal configuration, which has a fixed (as opposed to per-channel) VCO * config and different synth values from the standard set (divide ratio * is still shared with the standard set). *//* The per-channel synth values for all standard VCO configurations. These get * written to register 1. */static const u8 uw2453_std_synth[] = { RF_CHANNEL( 1) = 0x47, RF_CHANNEL( 2) = 0x47, RF_CHANNEL( 3) = 0x67, RF_CHANNEL( 4) = 0x67, RF_CHANNEL( 5) = 0x67, RF_CHANNEL( 6) = 0x67, RF_CHANNEL( 7) = 0x57, RF_CHANNEL( 8) = 0x57, RF_CHANNEL( 9) = 0x57, RF_CHANNEL(10) = 0x57, RF_CHANNEL(11) = 0x77, RF_CHANNEL(12) = 0x77, RF_CHANNEL(13) = 0x77, RF_CHANNEL(14) = 0x4f,};/* This table stores the synthesizer fractional divide ratio for *all* VCO * configurations (both standard and autocal). These get written to register 2. */static const u16 uw2453_synth_divide[] = { RF_CHANNEL( 1) = 0x999, RF_CHANNEL( 2) = 0x99b, RF_CHANNEL( 3) = 0x998, RF_CHANNEL( 4) = 0x99a, RF_CHANNEL( 5) = 0x999, RF_CHANNEL( 6) = 0x99b, RF_CHANNEL( 7) = 0x998, RF_CHANNEL( 8) = 0x99a, RF_CHANNEL( 9) = 0x999, RF_CHANNEL(10) = 0x99b, RF_CHANNEL(11) = 0x998, RF_CHANNEL(12) = 0x99a, RF_CHANNEL(13) = 0x999, RF_CHANNEL(14) = 0xccc,};/* Here is the data for all the standard VCO configurations. We shrink our * table a little by observing that both channels in a consecutive pair share * the same value. We also observe that the high 4 bits ([0:3] in the specs) * are all 'Reserved' and are always set to 0x4 - we chop them off in the data * below. */#define CHAN_TO_PAIRIDX(a) ((a - 1) / 2)#define RF_CHANPAIR(a,b) [CHAN_TO_PAIRIDX(a)]static const u16 uw2453_std_vco_cfg[][7] = { { /* table 1 */ RF_CHANPAIR( 1, 2) = 0x664d, RF_CHANPAIR( 3, 4) = 0x604d, RF_CHANPAIR( 5, 6) = 0x6675, RF_CHANPAIR( 7, 8) = 0x6475, RF_CHANPAIR( 9, 10) = 0x6655, RF_CHANPAIR(11, 12) = 0x6455, RF_CHANPAIR(13, 14) = 0x6665, }, { /* table 2 */ RF_CHANPAIR( 1, 2) = 0x666d, RF_CHANPAIR( 3, 4) = 0x606d, RF_CHANPAIR( 5, 6) = 0x664d, RF_CHANPAIR( 7, 8) = 0x644d, RF_CHANPAIR( 9, 10) = 0x6675, RF_CHANPAIR(11, 12) = 0x6475, RF_CHANPAIR(13, 14) = 0x6655, }, { /* table 3 */ RF_CHANPAIR( 1, 2) = 0x665d, RF_CHANPAIR( 3, 4) = 0x605d, RF_CHANPAIR( 5, 6) = 0x666d, RF_CHANPAIR( 7, 8) = 0x646d, RF_CHANPAIR( 9, 10) = 0x664d, RF_CHANPAIR(11, 12) = 0x644d, RF_CHANPAIR(13, 14) = 0x6675, }, { /* table 4 */ RF_CHANPAIR( 1, 2) = 0x667d, RF_CHANPAIR( 3, 4) = 0x607d, RF_CHANPAIR( 5, 6) = 0x665d, RF_CHANPAIR( 7, 8) = 0x645d, RF_CHANPAIR( 9, 10) = 0x666d, RF_CHANPAIR(11, 12) = 0x646d, RF_CHANPAIR(13, 14) = 0x664d, }, { /* table 5 */ RF_CHANPAIR( 1, 2) = 0x6643, RF_CHANPAIR( 3, 4) = 0x6043, RF_CHANPAIR( 5, 6) = 0x667d, RF_CHANPAIR( 7, 8) = 0x647d, RF_CHANPAIR( 9, 10) = 0x665d, RF_CHANPAIR(11, 12) = 0x645d, RF_CHANPAIR(13, 14) = 0x666d, }, { /* table 6 */ RF_CHANPAIR( 1, 2) = 0x6663, RF_CHANPAIR( 3, 4) = 0x6063, RF_CHANPAIR( 5, 6) = 0x6643, RF_CHANPAIR( 7, 8) = 0x6443, RF_CHANPAIR( 9, 10) = 0x667d, RF_CHANPAIR(11, 12) = 0x647d, RF_CHANPAIR(13, 14) = 0x665d, }, { /* table 7 */ RF_CHANPAIR( 1, 2) = 0x6653, RF_CHANPAIR( 3, 4) = 0x6053, RF_CHANPAIR( 5, 6) = 0x6663, RF_CHANPAIR( 7, 8) = 0x6463, RF_CHANPAIR( 9, 10) = 0x6643, RF_CHANPAIR(11, 12) = 0x6443, RF_CHANPAIR(13, 14) = 0x667d, }, { /* table 8 */ RF_CHANPAIR( 1, 2) = 0x6673, RF_CHANPAIR( 3, 4) = 0x6073, RF_CHANPAIR( 5, 6) = 0x6653, RF_CHANPAIR( 7, 8) = 0x6453, RF_CHANPAIR( 9, 10) = 0x6663, RF_CHANPAIR(11, 12) = 0x6463, RF_CHANPAIR(13, 14) = 0x6643, }, { /* table 9 */ RF_CHANPAIR( 1, 2) = 0x664b, RF_CHANPAIR( 3, 4) = 0x604b, RF_CHANPAIR( 5, 6) = 0x6673, RF_CHANPAIR( 7, 8) = 0x6473, RF_CHANPAIR( 9, 10) = 0x6653, RF_CHANPAIR(11, 12) = 0x6453, RF_CHANPAIR(13, 14) = 0x6663, }, { /* table 10 */ RF_CHANPAIR( 1, 2) = 0x666b, RF_CHANPAIR( 3, 4) = 0x606b, RF_CHANPAIR( 5, 6) = 0x664b, RF_CHANPAIR( 7, 8) = 0x644b, RF_CHANPAIR( 9, 10) = 0x6673, RF_CHANPAIR(11, 12) = 0x6473, RF_CHANPAIR(13, 14) = 0x6653, }, { /* table 11 */ RF_CHANPAIR( 1, 2) = 0x665b, RF_CHANPAIR( 3, 4) = 0x605b, RF_CHANPAIR( 5, 6) = 0x666b, RF_CHANPAIR( 7, 8) = 0x646b, RF_CHANPAIR( 9, 10) = 0x664b, RF_CHANPAIR(11, 12) = 0x644b, RF_CHANPAIR(13, 14) = 0x6673, },};/* The per-channel synth values for autocal. These get written to register 1. */static const u16 uw2453_autocal_synth[] = { RF_CHANNEL( 1) = 0x6847, RF_CHANNEL( 2) = 0x6847, RF_CHANNEL( 3) = 0x6867, RF_CHANNEL( 4) = 0x6867, RF_CHANNEL( 5) = 0x6867, RF_CHANNEL( 6) = 0x6867, RF_CHANNEL( 7) = 0x6857, RF_CHANNEL( 8) = 0x6857, RF_CHANNEL( 9) = 0x6857, RF_CHANNEL(10) = 0x6857, RF_CHANNEL(11) = 0x6877, RF_CHANNEL(12) = 0x6877, RF_CHANNEL(13) = 0x6877, RF_CHANNEL(14) = 0x684f,};/* The VCO configuration for autocal (all channels) */static const u16 UW2453_AUTOCAL_VCO_CFG = 0x6662;/* TX gain settings. The array index corresponds to the TX power integration * values found in the EEPROM. The values get written to register 7. */static u32 uw2453_txgain[] = { [0x00] = 0x0e313, [0x01] = 0x0fb13, [0x02] = 0x0e093, [0x03] = 0x0f893, [0x04] = 0x0ea93, [0x05] = 0x1f093, [0x06] = 0x1f493, [0x07] = 0x1f693, [0x08] = 0x1f393, [0x09] = 0x1f35b, [0x0a] = 0x1e6db, [0x0b] = 0x1ff3f, [0x0c] = 0x1ffff, [0x0d] = 0x361d7, [0x0e] = 0x37fbf, [0x0f] = 0x3ff8b, [0x10] = 0x3ff33, [0x11] = 0x3fb3f, [0x12] = 0x3ffff,};/* RF-specific structure */struct uw2453_priv { /* index into synth/VCO config tables where PLL lock was found * -1 means autocal */ int config;};#define UW2453_PRIV(rf) ((struct uw2453_priv *) (rf)->priv)static int uw2453_synth_set_channel(struct zd_chip *chip, int channel, bool autocal){ int r; int idx = channel - 1; u32 val; if (autocal) val = UW2453_REGWRITE(1, uw2453_autocal_synth[idx]); else val = UW2453_REGWRITE(1, uw2453_std_synth[idx]); r = zd_rfwrite_locked(chip, val, RF_RV_BITS); if (r) return r; return zd_rfwrite_locked(chip, UW2453_REGWRITE(2, uw2453_synth_divide[idx]), RF_RV_BITS);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -