⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rt2500pci.c

📁 linux内核源码
💻 C
📖 第 1 页 / 共 4 页
字号:
/*	Copyright (C) 2004 - 2007 rt2x00 SourceForge Project	<http://rt2x00.serialmonkey.com>	This program is free software; you can redistribute it and/or modify	it under the terms of the GNU General Public License as published by	the Free Software Foundation; either version 2 of the License, or	(at your option) any later version.	This program is distributed in the hope that it will be useful,	but WITHOUT ANY WARRANTY; without even the implied warranty of	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the	GNU General Public License for more details.	You should have received a copy of the GNU General Public License	along with this program; if not, write to the	Free Software Foundation, Inc.,	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *//*	Module: rt2500pci	Abstract: rt2500pci device specific routines.	Supported chipsets: RT2560. *//* * Set enviroment defines for rt2x00.h */#define DRV_NAME "rt2500pci"#include <linux/delay.h>#include <linux/etherdevice.h>#include <linux/init.h>#include <linux/kernel.h>#include <linux/module.h>#include <linux/pci.h>#include <linux/eeprom_93cx6.h>#include "rt2x00.h"#include "rt2x00pci.h"#include "rt2500pci.h"/* * Register access. * All access to the CSR registers will go through the methods * rt2x00pci_register_read and rt2x00pci_register_write. * BBP and RF register require indirect register access, * and use the CSR registers BBPCSR and RFCSR to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. */static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev){	u32 reg;	unsigned int i;	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {		rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);		if (!rt2x00_get_field32(reg, BBPCSR_BUSY))			break;		udelay(REGISTER_BUSY_DELAY);	}	return reg;}static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,				const unsigned int word, const u8 value){	u32 reg;	/*	 * Wait until the BBP becomes ready.	 */	reg = rt2500pci_bbp_check(rt2x00dev);	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {		ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");		return;	}	/*	 * Write the data into the BBP.	 */	reg = 0;	rt2x00_set_field32(&reg, BBPCSR_VALUE, value);	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);}static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,			       const unsigned int word, u8 *value){	u32 reg;	/*	 * Wait until the BBP becomes ready.	 */	reg = rt2500pci_bbp_check(rt2x00dev);	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");		return;	}	/*	 * Write the request into the BBP.	 */	reg = 0;	rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);	rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);	rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);	rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);	/*	 * Wait until the BBP becomes ready.	 */	reg = rt2500pci_bbp_check(rt2x00dev);	if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {		ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");		*value = 0xff;		return;	}	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);}static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,			       const unsigned int word, const u32 value){	u32 reg;	unsigned int i;	if (!word)		return;	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {		rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);		if (!rt2x00_get_field32(reg, RFCSR_BUSY))			goto rf_write;		udelay(REGISTER_BUSY_DELAY);	}	ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");	return;rf_write:	reg = 0;	rt2x00_set_field32(&reg, RFCSR_VALUE, value);	rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);	rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);	rt2x00_set_field32(&reg, RFCSR_BUSY, 1);	rt2x00pci_register_write(rt2x00dev, RFCSR, reg);	rt2x00_rf_write(rt2x00dev, word, value);}static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom){	struct rt2x00_dev *rt2x00dev = eeprom->data;	u32 reg;	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);	eeprom->reg_data_clock =	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);	eeprom->reg_chip_select =	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);}static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom){	struct rt2x00_dev *rt2x00dev = eeprom->data;	u32 reg = 0;	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,			   !!eeprom->reg_data_clock);	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,			   !!eeprom->reg_chip_select);	rt2x00pci_register_write(rt2x00dev, CSR21, reg);}#ifdef CONFIG_RT2X00_LIB_DEBUGFS#define CSR_OFFSET(__word)	( CSR_REG_BASE + ((__word) * sizeof(u32)) )static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,			       const unsigned int word, u32 *data){	rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);}static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,				const unsigned int word, u32 data){	rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);}static const struct rt2x00debug rt2500pci_rt2x00debug = {	.owner	= THIS_MODULE,	.csr	= {		.read		= rt2500pci_read_csr,		.write		= rt2500pci_write_csr,		.word_size	= sizeof(u32),		.word_count	= CSR_REG_SIZE / sizeof(u32),	},	.eeprom	= {		.read		= rt2x00_eeprom_read,		.write		= rt2x00_eeprom_write,		.word_size	= sizeof(u16),		.word_count	= EEPROM_SIZE / sizeof(u16),	},	.bbp	= {		.read		= rt2500pci_bbp_read,		.write		= rt2500pci_bbp_write,		.word_size	= sizeof(u8),		.word_count	= BBP_SIZE / sizeof(u8),	},	.rf	= {		.read		= rt2x00_rf_read,		.write		= rt2500pci_rf_write,		.word_size	= sizeof(u32),		.word_count	= RF_SIZE / sizeof(u32),	},};#endif /* CONFIG_RT2X00_LIB_DEBUGFS */#ifdef CONFIG_RT2500PCI_RFKILLstatic int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev){	u32 reg;	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);	return rt2x00_get_field32(reg, GPIOCSR_BIT0);}#else#define rt2500pci_rfkill_poll	NULL#endif /* CONFIG_RT2500PCI_RFKILL *//* * Configuration handlers. */static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev,				      __le32 *mac){	rt2x00pci_register_multiwrite(rt2x00dev, CSR3, mac,				      (2 * sizeof(__le32)));}static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev,				   __le32 *bssid){	rt2x00pci_register_multiwrite(rt2x00dev, CSR5, bssid,				      (2 * sizeof(__le32)));}static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type,				  const int tsf_sync){	u32 reg;	rt2x00pci_register_write(rt2x00dev, CSR14, 0);	/*	 * Enable beacon config	 */	rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);	rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,			   PREAMBLE + get_duration(IEEE80211_HEADER, 20));	rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,			   rt2x00lib_get_ring(rt2x00dev,					      IEEE80211_TX_QUEUE_BEACON)			   ->tx_params.cw_min);	rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);	/*	 * Enable synchronisation.	 */	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);	rt2x00_set_field32(&reg, CSR14_TBCN, 1);	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, tsf_sync);	rt2x00pci_register_write(rt2x00dev, CSR14, reg);}static void rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,				      const int short_preamble,				      const int ack_timeout,				      const int ack_consume_time){	int preamble_mask;	u32 reg;	/*	 * When short preamble is enabled, we should set bit 0x08	 */	preamble_mask = short_preamble << 3;	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, ack_timeout);	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble_mask);	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);	rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);}static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,				     const int basic_rate_mask){	rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);}static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,				     struct rf_channel *rf, const int txpower){	u8 r70;	/*	 * Set TXpower.	 */	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));	/*	 * Switch on tuning bits.	 * For RT2523 devices we do not need to update the R1 register.	 */	if (!rt2x00_rf(&rt2x00dev->chip, RF2523))		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);	/*	 * For RT2525 we should first set the channel to half band higher.	 */	if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {		static const u32 vals[] = {			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,			0x00080d2e, 0x00080d3a		};		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);		if (rf->rf4)			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);	}	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);	if (rf->rf4)		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);	/*	 * Channel 14 requires the Japan filter bit to be set.	 */	r70 = 0x46;	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);	rt2500pci_bbp_write(rt2x00dev, 70, r70);	msleep(1);	/*	 * Switch off tuning bits.	 * For RT2523 devices we do not need to update the R1 register.	 */	if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);	}	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);	/*	 * Clear false CRC during channel switch.	 */	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);}static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,				     const int txpower){	u32 rf3;	rt2x00_rf_read(rt2x00dev, 3, &rf3);	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));	rt2500pci_rf_write(rt2x00dev, 3, rf3);}static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,				     const int antenna_tx, const int antenna_rx){	u32 reg;	u8 r14;	u8 r2;	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);	rt2500pci_bbp_read(rt2x00dev, 14, &r14);	rt2500pci_bbp_read(rt2x00dev, 2, &r2);	/*	 * Configure the TX antenna.	 */	switch (antenna_tx) {	case ANTENNA_SW_DIVERSITY:	case ANTENNA_HW_DIVERSITY:		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);		break;	case ANTENNA_A:		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);		break;	case ANTENNA_B:		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);		break;	}	/*	 * Configure the RX antenna.	 */	switch (antenna_rx) {	case ANTENNA_SW_DIVERSITY:	case ANTENNA_HW_DIVERSITY:		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);		break;	case ANTENNA_A:		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);		break;	case ANTENNA_B:		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);		break;	}	/*	 * RT2525E and RT5222 need to flip TX I/Q	 */	if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||	    rt2x00_rf(&rt2x00dev->chip, RF5222)) {		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);		/*		 * RT2525E does not need RX I/Q Flip.		 */		if (rt2x00_rf(&rt2x00dev->chip, RF2525E))			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);	} else {		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -