⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 axisflashmap.c

📁 linux内核源码
💻 C
字号:
/* * Physical mapping layer for MTD using the Axis partitiontable format * * Copyright (c) 2001, 2002, 2003 Axis Communications AB * * This file is under the GPL. * * First partition is always sector 0 regardless of if we find a partitiontable * or not. In the start of the next sector, there can be a partitiontable that * tells us what other partitions to define. If there isn't, we use a default * partition split defined below. * * Copy of os/lx25/arch/cris/arch-v10/drivers/axisflashmap.c 1.5 * with minor changes. * */#include <linux/module.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/mtd/concat.h>#include <linux/mtd/map.h>#include <linux/mtd/mtd.h>#include <linux/mtd/mtdram.h>#include <linux/mtd/partitions.h>#include <asm/arch/hwregs/config_defs.h>#include <asm/axisflashmap.h>#include <asm/mmu.h>#define MEM_CSE0_SIZE (0x04000000)#define MEM_CSE1_SIZE (0x04000000)#define FLASH_UNCACHED_ADDR  KSEG_E#define FLASH_CACHED_ADDR    KSEG_F#if CONFIG_ETRAX_FLASH_BUSWIDTH==1#define flash_data __u8#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2#define flash_data __u16#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4#define flash_data __u16#endif/* From head.S */extern unsigned long romfs_start, romfs_length, romfs_in_flash;/* The master mtd for the entire flash. */struct mtd_info* axisflash_mtd = NULL;/* Map driver functions. */static map_word flash_read(struct map_info *map, unsigned long ofs){	map_word tmp;	tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);	return tmp;}static void flash_copy_from(struct map_info *map, void *to,			    unsigned long from, ssize_t len){	memcpy(to, (void *)(map->map_priv_1 + from), len);}static void flash_write(struct map_info *map, map_word d, unsigned long adr){	*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];}/* * The map for chip select e0. * * We run into tricky coherence situations if we mix cached with uncached * accesses to we only use the uncached version here. * * The size field is the total size where the flash chips may be mapped on the * chip select. MTD probes should find all devices there and it does not matter * if there are unmapped gaps or aliases (mirrors of flash devices). The MTD * probes will ignore them. * * The start address in map_priv_1 is in virtual memory so we cannot use * MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start * address of cse0. */static struct map_info map_cse0 = {	.name = "cse0",	.size = MEM_CSE0_SIZE,	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,	.read = flash_read,	.copy_from = flash_copy_from,	.write = flash_write,	.map_priv_1 = FLASH_UNCACHED_ADDR};/* * The map for chip select e1. * * If there was a gap between cse0 and cse1, map_priv_1 would get the wrong * address, but there isn't. */static struct map_info map_cse1 = {	.name = "cse1",	.size = MEM_CSE1_SIZE,	.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,	.read = flash_read,	.copy_from = flash_copy_from,	.write = flash_write,	.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE};/* If no partition-table was found, we use this default-set. */#define MAX_PARTITIONS         7#define NUM_DEFAULT_PARTITIONS 3/* * Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the * size of one flash block and "filesystem"-partition needs 5 blocks to be able * to use JFFS. */static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {	{		.name = "boot firmware",		.size = CONFIG_ETRAX_PTABLE_SECTOR,		.offset = 0	},	{		.name = "kernel",		.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),		.offset = CONFIG_ETRAX_PTABLE_SECTOR	},	{		.name = "filesystem",		.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,		.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)	}};/* Initialize the ones normally used. */static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {	{		.name = "part0",		.size = CONFIG_ETRAX_PTABLE_SECTOR,		.offset = 0	},	{		.name = "part1",		.size = 0,		.offset = 0	},	{		.name = "part2",		.size = 0,		.offset = 0	},	{		.name = "part3",		.size = 0,		.offset = 0	},	{		.name = "part4",		.size = 0,		.offset = 0	},	{		.name = "part5",		.size = 0,		.offset = 0	},	{		.name = "part6",		.size = 0,		.offset = 0	},};/* * Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash * chips in that order (because the amd_flash-driver is faster). */static struct mtd_info *probe_cs(struct map_info *map_cs){	struct mtd_info *mtd_cs = NULL;	printk(KERN_INFO	       "%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",	       map_cs->name, map_cs->size, map_cs->map_priv_1);#ifdef CONFIG_MTD_CFI		mtd_cs = do_map_probe("cfi_probe", map_cs);#endif#ifdef CONFIG_MTD_JEDECPROBE	if (!mtd_cs)		mtd_cs = do_map_probe("jedec_probe", map_cs);#endif	return mtd_cs;}/* * Probe each chip select individually for flash chips. If there are chips on * both cse0 and cse1, the mtd_info structs will be concatenated to one struct * so that MTD partitions can cross chip boundaries. * * The only known restriction to how you can mount your chips is that each * chip select must hold similar flash chips. But you need external hardware * to do that anyway and you can put totally different chips on cse0 and cse1 * so it isn't really much of a restriction. */extern struct mtd_info* __init crisv32_nand_flash_probe (void);static struct mtd_info *flash_probe(void){	struct mtd_info *mtd_cse0;	struct mtd_info *mtd_cse1;	struct mtd_info *mtd_nand = NULL;	struct mtd_info *mtd_total;	struct mtd_info *mtds[3];	int count = 0;	if ((mtd_cse0 = probe_cs(&map_cse0)) != NULL)		mtds[count++] = mtd_cse0;	if ((mtd_cse1 = probe_cs(&map_cse1)) != NULL)		mtds[count++] = mtd_cse1;#ifdef CONFIG_ETRAX_NANDFLASH	if ((mtd_nand = crisv32_nand_flash_probe()) != NULL)		mtds[count++] = mtd_nand;#endif	if (!mtd_cse0 && !mtd_cse1 && !mtd_nand) {		/* No chip found. */		return NULL;	}	if (count > 1) {#ifdef CONFIG_MTD_CONCAT		/* Since the concatenation layer adds a small overhead we		 * could try to figure out if the chips in cse0 and cse1 are		 * identical and reprobe the whole cse0+cse1 window. But since		 * flash chips are slow, the overhead is relatively small.		 * So we use the MTD concatenation layer instead of further		 * complicating the probing procedure.		 */		mtd_total = mtd_concat_create(mtds,		                              count,		                              "cse0+cse1+nand");#else		printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "		       "(mis)configuration!\n", map_cse0.name, map_cse1.name);		mtd_toal = NULL;#endif		if (!mtd_total) {			printk(KERN_ERR "%s and %s: Concatenation failed!\n",			       map_cse0.name, map_cse1.name);			/* The best we can do now is to only use what we found			 * at cse0.			 */			mtd_total = mtd_cse0;			map_destroy(mtd_cse1);		}	} else {		mtd_total = mtd_cse0? mtd_cse0 : mtd_cse1 ? mtd_cse1 : mtd_nand;	}	return mtd_total;}extern unsigned long crisv32_nand_boot;extern unsigned long crisv32_nand_cramfs_offset;/* * Probe the flash chip(s) and, if it succeeds, read the partition-table * and register the partitions with MTD. */static int __init init_axis_flash(void){	struct mtd_info *mymtd;	int err = 0;	int pidx = 0;	struct partitiontable_head *ptable_head = NULL;	struct partitiontable_entry *ptable;	int use_default_ptable = 1; /* Until proven otherwise. */	const char *pmsg = KERN_INFO "  /dev/flash%d at 0x%08x, size 0x%08x\n";	static char page[512];	size_t len;#ifndef CONFIG_ETRAXFS_SIM	mymtd = flash_probe();	mymtd->read(mymtd, CONFIG_ETRAX_PTABLE_SECTOR, 512, &len, page);	ptable_head = (struct partitiontable_head *)(page + PARTITION_TABLE_OFFSET);	if (!mymtd) {		/* There's no reason to use this module if no flash chip can		 * be identified. Make sure that's understood.		 */		printk(KERN_INFO "axisflashmap: Found no flash chip.\n");	} else {		printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",		       mymtd->name, mymtd->size);		axisflash_mtd = mymtd;	}	if (mymtd) {		mymtd->owner = THIS_MODULE;	}	pidx++;  /* First partition is always set to the default. */	if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)	    && (ptable_head->size <		(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +		PARTITIONTABLE_END_MARKER_SIZE))	    && (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +				  ptable_head->size -				  PARTITIONTABLE_END_MARKER_SIZE)		== PARTITIONTABLE_END_MARKER)) {		/* Looks like a start, sane length and end of a		 * partition table, lets check csum etc.		 */		int ptable_ok = 0;		struct partitiontable_entry *max_addr =			(struct partitiontable_entry *)			((unsigned long)ptable_head + sizeof(*ptable_head) +			 ptable_head->size);		unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;		unsigned char *p;		unsigned long csum = 0;		ptable = (struct partitiontable_entry *)			((unsigned long)ptable_head + sizeof(*ptable_head));		/* Lets be PARANOID, and check the checksum. */		p = (unsigned char*) ptable;		while (p <= (unsigned char*)max_addr) {			csum += *p++;			csum += *p++;			csum += *p++;			csum += *p++;		}		ptable_ok = (csum == ptable_head->checksum);		/* Read the entries and use/show the info.  */		printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",		       (ptable_ok ? " valid" : "n invalid"), ptable_head,		       max_addr);		/* We have found a working bootblock.  Now read the		 * partition table.  Scan the table.  It ends when		 * there is 0xffffffff, that is, empty flash.		 */		while (ptable_ok		       && ptable->offset != 0xffffffff		       && ptable < max_addr		       && pidx < MAX_PARTITIONS) {			axis_partitions[pidx].offset = offset + ptable->offset + (crisv32_nand_boot ? 16384 : 0);			axis_partitions[pidx].size = ptable->size;			printk(pmsg, pidx, axis_partitions[pidx].offset,			       axis_partitions[pidx].size);			pidx++;			ptable++;		}		use_default_ptable = !ptable_ok;	}	if (romfs_in_flash) {		/* Add an overlapping device for the root partition (romfs). */		axis_partitions[pidx].name = "romfs";		if (crisv32_nand_boot) {			char* data = kmalloc(1024, GFP_KERNEL);			int len;			int offset = crisv32_nand_cramfs_offset & ~(1024-1);			char* tmp;			mymtd->read(mymtd, offset, 1024, &len, data);			tmp = &data[crisv32_nand_cramfs_offset % 512];			axis_partitions[pidx].size = *(unsigned*)(tmp + 4);			axis_partitions[pidx].offset = crisv32_nand_cramfs_offset;			kfree(data);		} else {			axis_partitions[pidx].size = romfs_length;			axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;		}		axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;		printk(KERN_INFO                       " Adding readonly flash partition for romfs image:\n");		printk(pmsg, pidx, axis_partitions[pidx].offset,		       axis_partitions[pidx].size);		pidx++;	}        if (mymtd) {		if (use_default_ptable) {			printk(KERN_INFO " Using default partition table.\n");			err = add_mtd_partitions(mymtd, axis_default_partitions,						 NUM_DEFAULT_PARTITIONS);		} else {			err = add_mtd_partitions(mymtd, axis_partitions, pidx);		}		if (err) {			panic("axisflashmap could not add MTD partitions!\n");		}	}/* CONFIG_EXTRAXFS_SIM */#endif	if (!romfs_in_flash) {		/* Create an RAM device for the root partition (romfs). */#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)		/* No use trying to boot this kernel from RAM. Panic! */		printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "		       "device due to kernel (mis)configuration!\n");		panic("This kernel cannot boot from RAM!\n");#else		struct mtd_info *mtd_ram;		mtd_ram = kmalloc(sizeof(struct mtd_info),						     GFP_KERNEL);		if (!mtd_ram) {			panic("axisflashmap couldn't allocate memory for "			      "mtd_info!\n");		}		printk(KERN_INFO " Adding RAM partition for romfs image:\n");		printk(pmsg, pidx, romfs_start, romfs_length);		err = mtdram_init_device(mtd_ram, (void*)romfs_start,		                         romfs_length, "romfs");		if (err) {			panic("axisflashmap could not initialize MTD RAM "			      "device!\n");		}#endif	}	return err;}/* This adds the above to the kernels init-call chain. */module_init(init_axis_flash);EXPORT_SYMBOL(axisflash_mtd);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -