⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ilsp.s

📁 linux内核源码
💻 S
📖 第 1 页 / 共 2 页
字号:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUPM68000 Hi-Performance Microprocessor DivisionM68060 Software PackageProduction Release P1.00 -- October 10, 1994M68060 Software Package Copyright © 1993, 1994 Motorola Inc.  All rights reserved.THE SOFTWARE is provided on an "AS IS" basis and without warranty.To the maximum extent permitted by applicable law,MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSEand any warranty against infringement with regard to the SOFTWARE(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.To the maximum extent permitted by applicable law,IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.You are hereby granted a copyright license to use, modify, and distribute the SOFTWAREso long as this entire notice is retained without alteration in any modified and/orredistributed versions, and that such modified versions are clearly identified as such.No licenses are granted by implication, estoppel or otherwise under any patentsor trademarks of Motorola, Inc.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# litop.s:#	This file is appended to the top of the 060FPLSP package# and contains the entry points into the package. The user, in# effect, branches to one of the branch table entries located here.#	bra.l	_060LSP__idivs64_	short	0x0000	bra.l	_060LSP__idivu64_	short	0x0000	bra.l	_060LSP__imuls64_	short	0x0000	bra.l	_060LSP__imulu64_	short	0x0000	bra.l	_060LSP__cmp2_Ab_	short	0x0000	bra.l	_060LSP__cmp2_Aw_	short	0x0000	bra.l	_060LSP__cmp2_Al_	short	0x0000	bra.l	_060LSP__cmp2_Db_	short	0x0000	bra.l	_060LSP__cmp2_Dw_	short	0x0000	bra.l	_060LSP__cmp2_Dl_	short	0x0000# leave room for future possible aditions.	align	0x200########################################################################## XDEF ****************************************************************	##	_060LSP__idivu64_(): Emulate 64-bit unsigned div instruction.	##	_060LSP__idivs64_(): Emulate 64-bit signed div instruction.	##									##	This is the library version which is accessed as a subroutine	##	and therefore does not work exactly like the 680X0 div{s,u}.l	##	64-bit divide instruction.					##									## XREF ****************************************************************	##	None.								##									## INPUT ***************************************************************	##	0x4(sp)  = divisor						##	0x8(sp)  = hi(dividend)						##	0xc(sp)  = lo(dividend)						##	0x10(sp) = pointer to location to place quotient/remainder	##									## OUTPUT **************************************************************	##	0x10(sp) = points to location of remainder/quotient.		##		   remainder is in first longword, quotient is in 2nd.	##									## ALGORITHM ***********************************************************	##	If the operands are signed, make them unsigned and save the	## sign info for later. Separate out special cases like divide-by-zero	## or 32-bit divides if possible. Else, use a special math algorithm	## to calculate the result.						##	Restore sign info if signed instruction. Set the condition	## codes before performing the final "rts". If the divisor was equal to	## zero, then perform a divide-by-zero using a 16-bit implemented	## divide instruction. This way, the operating system can record that	## the event occurred even though it may not point to the correct place.	##									##########################################################################set	POSNEG,		-1set	NDIVISOR,	-2set	NDIVIDEND,	-3set	DDSECOND,	-4set	DDNORMAL,	-8set	DDQUOTIENT,	-12set	DIV64_CC,	-16########### divs.l ###########	global		_060LSP__idivs64__060LSP__idivs64_:# PROLOGUE BEGIN ########################################################	link.w		%a6,&-16	movm.l		&0x3f00,-(%sp)		# save d2-d7#	fmovm.l		&0x0,-(%sp)		# save no fpregs# PROLOGUE END ##########################################################	mov.w		%cc,DIV64_CC(%a6)	st		POSNEG(%a6)		# signed operation	bra.b		ldiv64_cont########### divu.l ###########	global		_060LSP__idivu64__060LSP__idivu64_:# PROLOGUE BEGIN ########################################################	link.w		%a6,&-16	movm.l		&0x3f00,-(%sp)		# save d2-d7#	fmovm.l		&0x0,-(%sp)		# save no fpregs# PROLOGUE END ##########################################################	mov.w		%cc,DIV64_CC(%a6)	sf		POSNEG(%a6)		# unsigned operationldiv64_cont:	mov.l		0x8(%a6),%d7		# fetch divisor	beq.w		ldiv64eq0		# divisor is = 0!!!	mov.l		0xc(%a6), %d5		# get dividend hi	mov.l		0x10(%a6), %d6		# get dividend lo# separate signed and unsigned divide	tst.b		POSNEG(%a6)		# signed or unsigned?	beq.b		ldspecialcases		# use positive divide# save the sign of the divisor# make divisor unsigned if it's negative	tst.l		%d7			# chk sign of divisor	slt		NDIVISOR(%a6)		# save sign of divisor	bpl.b		ldsgndividend	neg.l		%d7			# complement negative divisor# save the sign of the dividend# make dividend unsigned if it's negativeldsgndividend:	tst.l		%d5			# chk sign of hi(dividend)	slt		NDIVIDEND(%a6)		# save sign of dividend	bpl.b		ldspecialcases	mov.w		&0x0, %cc		# clear 'X' cc bit	negx.l		%d6			# complement signed dividend	negx.l		%d5# extract some special cases:#	- is (dividend == 0) ?#	- is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)ldspecialcases:	tst.l		%d5			# is (hi(dividend) == 0)	bne.b		ldnormaldivide		# no, so try it the long way	tst.l		%d6			# is (lo(dividend) == 0), too	beq.w		lddone			# yes, so (dividend == 0)	cmp.l		%d7,%d6			# is (divisor <= lo(dividend))	bls.b		ld32bitdivide		# yes, so use 32 bit divide	exg		%d5,%d6			# q = 0, r = dividend	bra.w		ldivfinish		# can't divide, we're done.ld32bitdivide:	tdivu.l		%d7, %d5:%d6		# it's only a 32/32 bit div!	bra.b		ldivfinishldnormaldivide:# last special case:#	- is hi(dividend) >= divisor ? if yes, then overflow	cmp.l		%d7,%d5	bls.b		lddovf			# answer won't fit in 32 bits# perform the divide algorithm:	bsr.l		ldclassical		# do int divide# separate into signed and unsigned finishes.ldivfinish:	tst.b		POSNEG(%a6)		# do divs, divu separately	beq.b		lddone			# divu has no processing!!!# it was a divs.l, so ccode setting is a little more complicated...	tst.b		NDIVIDEND(%a6)		# remainder has same sign	beq.b		ldcc			# as dividend.	neg.l		%d5			# sgn(rem) = sgn(dividend)ldcc:	mov.b		NDIVISOR(%a6), %d0	eor.b		%d0, NDIVIDEND(%a6)	# chk if quotient is negative	beq.b		ldqpos			# branch to quot positive# 0x80000000 is the largest number representable as a 32-bit negative# number. the negative of 0x80000000 is 0x80000000.	cmpi.l		%d6, &0x80000000	# will (-quot) fit in 32 bits?	bhi.b		lddovf	neg.l		%d6			# make (-quot) 2's comp	bra.b		lddoneldqpos:	btst		&0x1f, %d6		# will (+quot) fit in 32 bits?	bne.b		lddovflddone:# if the register numbers are the same, only the quotient gets saved.# so, if we always save the quotient second, we save ourselves a cmp&beq	andi.w		&0x10,DIV64_CC(%a6)	mov.w		DIV64_CC(%a6),%cc	tst.l		%d6			# may set 'N' ccode bit# here, the result is in d1 and d0. the current strategy is to save# the values at the location pointed to by a0.# use movm here to not disturb the condition codes.ldexit:	movm.l		&0x0060,([0x14,%a6])	# save result# EPILOGUE BEGIN #########################################################	fmovm.l		(%sp)+,&0x0		# restore no fpregs	movm.l		(%sp)+,&0x00fc		# restore d2-d7	unlk		%a6# EPILOGUE END ##########################################################	rts# the result should be the unchanged dividendlddovf:	mov.l		0xc(%a6), %d5		# get dividend hi	mov.l		0x10(%a6), %d6		# get dividend lo	andi.w		&0x1c,DIV64_CC(%a6)	ori.w		&0x02,DIV64_CC(%a6)	# set 'V' ccode bit	mov.w		DIV64_CC(%a6),%cc	bra.b		ldexitldiv64eq0:	mov.l		0xc(%a6),([0x14,%a6])	mov.l		0x10(%a6),([0x14,%a6],0x4)	mov.w		DIV64_CC(%a6),%cc# EPILOGUE BEGIN #########################################################	fmovm.l		(%sp)+,&0x0		# restore no fpregs	movm.l		(%sp)+,&0x00fc		# restore d2-d7	unlk		%a6# EPILOGUE END ##########################################################	divu.w		&0x0,%d0		# force a divbyzero exception	rts##################################################################################################################################################### This routine uses the 'classical' Algorithm D from Donald Knuth's	## Art of Computer Programming, vol II, Seminumerical Algorithms.	## For this implementation b=2**16, and the target is U1U2U3U4/V1V2,	## where U,V are words of the quadword dividend and longword divisor,	## and U1, V1 are the most significant words.				##									## The most sig. longword of the 64 bit dividend must be in %d5, least	## in %d6. The divisor must be in the variable ddivisor, and the		## signed/unsigned flag ddusign must be set (0=unsigned,1=signed).	## The quotient is returned in %d6, remainder in %d5, unless the		## v (overflow) bit is set in the saved %ccr. If overflow, the dividend	## is unchanged.								##########################################################################ldclassical:# if the divisor msw is 0, use simpler algorithm then the full blown# one at ddknuth:	cmpi.l		%d7, &0xffff	bhi.b		lddknuth		# go use D. Knuth algorithm# Since the divisor is only a word (and larger than the mslw of the dividend),# a simpler algorithm may be used :# In the general case, four quotient words would be created by# dividing the divisor word into each dividend word. In this case,# the first two quotient words must be zero, or overflow would occur.# Since we already checked this case above, we can treat the most significant# longword of the dividend as (0) remainder (see Knuth) and merely complete# the last two divisions to get a quotient longword and word remainder:	clr.l		%d1	swap		%d5			# same as r*b if previous step rqd	swap		%d6			# get u3 to lsw position	mov.w		%d6, %d5		# rb + u3	divu.w		%d7, %d5	mov.w		%d5, %d1		# first quotient word	swap		%d6			# get u4	mov.w		%d6, %d5		# rb + u4	divu.w		%d7, %d5	swap		%d1	mov.w		%d5, %d1		# 2nd quotient 'digit'	clr.w		%d5	swap		%d5			# now remainder	mov.l		%d1, %d6		# and quotient	rtslddknuth:# In this algorithm, the divisor is treated as a 2 digit (word) number# which is divided into a 3 digit (word) dividend to get one quotient# digit (word). After subtraction, the dividend is shifted and the# process repeated. Before beginning, the divisor and quotient are# 'normalized' so that the process of estimating the quotient digit# will yield verifiably correct results..	clr.l		DDNORMAL(%a6)		# count of shifts for normalization	clr.b		DDSECOND(%a6)		# clear flag for quotient digits	clr.l		%d1			# %d1 will hold trial quotientlddnchk:	btst		&31, %d7		# must we normalize? first word of	bne.b		lddnormalized		# divisor (V1) must be >= 65536/2	addq.l		&0x1, DDNORMAL(%a6)	# count normalization shifts	lsl.l		&0x1, %d7		# shift the divisor	lsl.l		&0x1, %d6		# shift u4,u3 with overflow to u2	roxl.l		&0x1, %d5		# shift u1,u2	bra.w		lddnchklddnormalized:# Now calculate an estimate of the quotient words (msw first, then lsw).# The comments use subscripts for the first quotient digit determination.	mov.l		%d7, %d3		# divisor	mov.l		%d5, %d2		# dividend mslw	swap		%d2	swap		%d3	cmp.w		%d2, %d3		# V1 = U1 ?	bne.b		lddqcalc1	mov.w		&0xffff, %d1		# use max trial quotient word	bra.b		lddadj0lddqcalc1:	mov.l		%d5, %d1	divu.w		%d3, %d1		# use quotient of mslw/msw	andi.l		&0x0000ffff, %d1	# zero any remainderlddadj0:# now test the trial quotient and adjust. This step plus the# normalization assures (according to Knuth) that the trial# quotient will be at worst 1 too large.	mov.l		%d6, -(%sp)	clr.w		%d6			# word u3 left	swap		%d6			# in lsw positionlddadj1: mov.l		%d7, %d3	mov.l		%d1, %d2	mulu.w		%d7, %d2		# V2q	swap		%d3	mulu.w		%d1, %d3		# V1q	mov.l		%d5, %d4		# U1U2	sub.l		%d3, %d4		# U1U2 - V1q	swap		%d4	mov.w		%d4,%d0	mov.w		%d6,%d4			# insert lower word (U3)	tst.w		%d0			# is upper word set?	bne.w		lddadjd1#	add.l		%d6, %d4		# (U1U2 - V1q) + U3	cmp.l		%d2, %d4	bls.b		lddadjd1		# is V2q > (U1U2-V1q) + U3 ?	subq.l		&0x1, %d1		# yes, decrement and recheck	bra.b		lddadj1lddadjd1:# now test the word by multiplying it by the divisor (V1V2) and comparing# the 3 digit (word) result with the current dividend words	mov.l		%d5, -(%sp)		# save %d5 (%d6 already saved)	mov.l		%d1, %d6	swap		%d6			# shift answer to ms 3 words	mov.l		%d7, %d5	bsr.l		ldmm2	mov.l		%d5, %d2		# now %d2,%d3 are trial*divisor	mov.l		%d6, %d3	mov.l		(%sp)+, %d5		# restore dividend	mov.l		(%sp)+, %d6	sub.l		%d3, %d6	subx.l		%d2, %d5		# subtract double precision	bcc		ldd2nd			# no carry, do next quotient digit	subq.l		&0x1, %d1		# q is one too large# need to add back divisor longword to current ms 3 digits of dividend# - according to Knuth, this is done only 2 out of 65536 times for random# divisor, dividend selection.	clr.l		%d2	mov.l		%d7, %d3	swap		%d3	clr.w		%d3			# %d3 now ls word of divisor	add.l		%d3, %d6		# aligned with 3rd word of dividend	addx.l		%d2, %d5	mov.l		%d7, %d3	clr.w		%d3			# %d3 now ms word of divisor	swap		%d3			# aligned with 2nd word of dividend	add.l		%d3, %d5ldd2nd:	tst.b		DDSECOND(%a6)	# both q words done?	bne.b		lddremain# first quotient digit now correct. store digit and shift the# (subtracted) dividend	mov.w		%d1, DDQUOTIENT(%a6)	clr.l		%d1	swap		%d5	swap		%d6	mov.w		%d6, %d5	clr.w		%d6	st		DDSECOND(%a6)		# second digit	bra.w		lddnormalizedlddremain:# add 2nd word to quotient, get the remainder.	mov.w		%d1, DDQUOTIENT+2(%a6)# shift down one word/digit to renormalize remainder.	mov.w		%d5, %d6	swap		%d6	swap		%d5	mov.l		DDNORMAL(%a6), %d7	# get norm shift count	beq.b		lddrn	subq.l		&0x1, %d7		# set for loop countlddnlp:	lsr.l		&0x1, %d5		# shift into %d6	roxr.l		&0x1, %d6	dbf		%d7, lddnlplddrn:	mov.l		%d6, %d5		# remainder	mov.l		DDQUOTIENT(%a6), %d6	# quotient	rtsldmm2:# factors for the 32X32->64 multiplication are in %d5 and %d6.# returns 64 bit result in %d5 (hi) %d6(lo).# destroys %d2,%d3,%d4.# multiply hi,lo words of each factor to get 4 intermediate products	mov.l		%d6, %d2	mov.l		%d6, %d3	mov.l		%d5, %d4	swap		%d3	swap		%d4	mulu.w		%d5, %d6		# %d6 <- lsw*lsw	mulu.w		%d3, %d5		# %d5 <- msw-dest*lsw-source	mulu.w		%d4, %d2		# %d2 <- msw-source*lsw-dest	mulu.w		%d4, %d3		# %d3 <- msw*msw# now use swap and addx to consolidate to two longwords	clr.l		%d4	swap		%d6	add.w		%d5, %d6		# add msw of l*l to lsw of m*l product	addx.w		%d4, %d3		# add any carry to m*m product	add.w		%d2, %d6		# add in lsw of other m*l product

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -