📄 ilsp.s
字号:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUPM68000 Hi-Performance Microprocessor DivisionM68060 Software PackageProduction Release P1.00 -- October 10, 1994M68060 Software Package Copyright © 1993, 1994 Motorola Inc. All rights reserved.THE SOFTWARE is provided on an "AS IS" basis and without warranty.To the maximum extent permitted by applicable law,MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSEand any warranty against infringement with regard to the SOFTWARE(INCLUDING ANY MODIFIED VERSIONS THEREOF) and any accompanying written materials.To the maximum extent permitted by applicable law,IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.Motorola assumes no responsibility for the maintenance and support of the SOFTWARE.You are hereby granted a copyright license to use, modify, and distribute the SOFTWAREso long as this entire notice is retained without alteration in any modified and/orredistributed versions, and that such modified versions are clearly identified as such.No licenses are granted by implication, estoppel or otherwise under any patentsor trademarks of Motorola, Inc.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# litop.s:# This file is appended to the top of the 060FPLSP package# and contains the entry points into the package. The user, in# effect, branches to one of the branch table entries located here.# bra.l _060LSP__idivs64_ short 0x0000 bra.l _060LSP__idivu64_ short 0x0000 bra.l _060LSP__imuls64_ short 0x0000 bra.l _060LSP__imulu64_ short 0x0000 bra.l _060LSP__cmp2_Ab_ short 0x0000 bra.l _060LSP__cmp2_Aw_ short 0x0000 bra.l _060LSP__cmp2_Al_ short 0x0000 bra.l _060LSP__cmp2_Db_ short 0x0000 bra.l _060LSP__cmp2_Dw_ short 0x0000 bra.l _060LSP__cmp2_Dl_ short 0x0000# leave room for future possible aditions. align 0x200########################################################################## XDEF **************************************************************** ## _060LSP__idivu64_(): Emulate 64-bit unsigned div instruction. ## _060LSP__idivs64_(): Emulate 64-bit signed div instruction. ## ## This is the library version which is accessed as a subroutine ## and therefore does not work exactly like the 680X0 div{s,u}.l ## 64-bit divide instruction. ## ## XREF **************************************************************** ## None. ## ## INPUT *************************************************************** ## 0x4(sp) = divisor ## 0x8(sp) = hi(dividend) ## 0xc(sp) = lo(dividend) ## 0x10(sp) = pointer to location to place quotient/remainder ## ## OUTPUT ************************************************************** ## 0x10(sp) = points to location of remainder/quotient. ## remainder is in first longword, quotient is in 2nd. ## ## ALGORITHM *********************************************************** ## If the operands are signed, make them unsigned and save the ## sign info for later. Separate out special cases like divide-by-zero ## or 32-bit divides if possible. Else, use a special math algorithm ## to calculate the result. ## Restore sign info if signed instruction. Set the condition ## codes before performing the final "rts". If the divisor was equal to ## zero, then perform a divide-by-zero using a 16-bit implemented ## divide instruction. This way, the operating system can record that ## the event occurred even though it may not point to the correct place. ## ##########################################################################set POSNEG, -1set NDIVISOR, -2set NDIVIDEND, -3set DDSECOND, -4set DDNORMAL, -8set DDQUOTIENT, -12set DIV64_CC, -16########### divs.l ########### global _060LSP__idivs64__060LSP__idivs64_:# PROLOGUE BEGIN ######################################################## link.w %a6,&-16 movm.l &0x3f00,-(%sp) # save d2-d7# fmovm.l &0x0,-(%sp) # save no fpregs# PROLOGUE END ########################################################## mov.w %cc,DIV64_CC(%a6) st POSNEG(%a6) # signed operation bra.b ldiv64_cont########### divu.l ########### global _060LSP__idivu64__060LSP__idivu64_:# PROLOGUE BEGIN ######################################################## link.w %a6,&-16 movm.l &0x3f00,-(%sp) # save d2-d7# fmovm.l &0x0,-(%sp) # save no fpregs# PROLOGUE END ########################################################## mov.w %cc,DIV64_CC(%a6) sf POSNEG(%a6) # unsigned operationldiv64_cont: mov.l 0x8(%a6),%d7 # fetch divisor beq.w ldiv64eq0 # divisor is = 0!!! mov.l 0xc(%a6), %d5 # get dividend hi mov.l 0x10(%a6), %d6 # get dividend lo# separate signed and unsigned divide tst.b POSNEG(%a6) # signed or unsigned? beq.b ldspecialcases # use positive divide# save the sign of the divisor# make divisor unsigned if it's negative tst.l %d7 # chk sign of divisor slt NDIVISOR(%a6) # save sign of divisor bpl.b ldsgndividend neg.l %d7 # complement negative divisor# save the sign of the dividend# make dividend unsigned if it's negativeldsgndividend: tst.l %d5 # chk sign of hi(dividend) slt NDIVIDEND(%a6) # save sign of dividend bpl.b ldspecialcases mov.w &0x0, %cc # clear 'X' cc bit negx.l %d6 # complement signed dividend negx.l %d5# extract some special cases:# - is (dividend == 0) ?# - is (hi(dividend) == 0 && (divisor <= lo(dividend))) ? (32-bit div)ldspecialcases: tst.l %d5 # is (hi(dividend) == 0) bne.b ldnormaldivide # no, so try it the long way tst.l %d6 # is (lo(dividend) == 0), too beq.w lddone # yes, so (dividend == 0) cmp.l %d7,%d6 # is (divisor <= lo(dividend)) bls.b ld32bitdivide # yes, so use 32 bit divide exg %d5,%d6 # q = 0, r = dividend bra.w ldivfinish # can't divide, we're done.ld32bitdivide: tdivu.l %d7, %d5:%d6 # it's only a 32/32 bit div! bra.b ldivfinishldnormaldivide:# last special case:# - is hi(dividend) >= divisor ? if yes, then overflow cmp.l %d7,%d5 bls.b lddovf # answer won't fit in 32 bits# perform the divide algorithm: bsr.l ldclassical # do int divide# separate into signed and unsigned finishes.ldivfinish: tst.b POSNEG(%a6) # do divs, divu separately beq.b lddone # divu has no processing!!!# it was a divs.l, so ccode setting is a little more complicated... tst.b NDIVIDEND(%a6) # remainder has same sign beq.b ldcc # as dividend. neg.l %d5 # sgn(rem) = sgn(dividend)ldcc: mov.b NDIVISOR(%a6), %d0 eor.b %d0, NDIVIDEND(%a6) # chk if quotient is negative beq.b ldqpos # branch to quot positive# 0x80000000 is the largest number representable as a 32-bit negative# number. the negative of 0x80000000 is 0x80000000. cmpi.l %d6, &0x80000000 # will (-quot) fit in 32 bits? bhi.b lddovf neg.l %d6 # make (-quot) 2's comp bra.b lddoneldqpos: btst &0x1f, %d6 # will (+quot) fit in 32 bits? bne.b lddovflddone:# if the register numbers are the same, only the quotient gets saved.# so, if we always save the quotient second, we save ourselves a cmp&beq andi.w &0x10,DIV64_CC(%a6) mov.w DIV64_CC(%a6),%cc tst.l %d6 # may set 'N' ccode bit# here, the result is in d1 and d0. the current strategy is to save# the values at the location pointed to by a0.# use movm here to not disturb the condition codes.ldexit: movm.l &0x0060,([0x14,%a6]) # save result# EPILOGUE BEGIN ######################################################### fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x00fc # restore d2-d7 unlk %a6# EPILOGUE END ########################################################## rts# the result should be the unchanged dividendlddovf: mov.l 0xc(%a6), %d5 # get dividend hi mov.l 0x10(%a6), %d6 # get dividend lo andi.w &0x1c,DIV64_CC(%a6) ori.w &0x02,DIV64_CC(%a6) # set 'V' ccode bit mov.w DIV64_CC(%a6),%cc bra.b ldexitldiv64eq0: mov.l 0xc(%a6),([0x14,%a6]) mov.l 0x10(%a6),([0x14,%a6],0x4) mov.w DIV64_CC(%a6),%cc# EPILOGUE BEGIN ######################################################### fmovm.l (%sp)+,&0x0 # restore no fpregs movm.l (%sp)+,&0x00fc # restore d2-d7 unlk %a6# EPILOGUE END ########################################################## divu.w &0x0,%d0 # force a divbyzero exception rts##################################################################################################################################################### This routine uses the 'classical' Algorithm D from Donald Knuth's ## Art of Computer Programming, vol II, Seminumerical Algorithms. ## For this implementation b=2**16, and the target is U1U2U3U4/V1V2, ## where U,V are words of the quadword dividend and longword divisor, ## and U1, V1 are the most significant words. ## ## The most sig. longword of the 64 bit dividend must be in %d5, least ## in %d6. The divisor must be in the variable ddivisor, and the ## signed/unsigned flag ddusign must be set (0=unsigned,1=signed). ## The quotient is returned in %d6, remainder in %d5, unless the ## v (overflow) bit is set in the saved %ccr. If overflow, the dividend ## is unchanged. ##########################################################################ldclassical:# if the divisor msw is 0, use simpler algorithm then the full blown# one at ddknuth: cmpi.l %d7, &0xffff bhi.b lddknuth # go use D. Knuth algorithm# Since the divisor is only a word (and larger than the mslw of the dividend),# a simpler algorithm may be used :# In the general case, four quotient words would be created by# dividing the divisor word into each dividend word. In this case,# the first two quotient words must be zero, or overflow would occur.# Since we already checked this case above, we can treat the most significant# longword of the dividend as (0) remainder (see Knuth) and merely complete# the last two divisions to get a quotient longword and word remainder: clr.l %d1 swap %d5 # same as r*b if previous step rqd swap %d6 # get u3 to lsw position mov.w %d6, %d5 # rb + u3 divu.w %d7, %d5 mov.w %d5, %d1 # first quotient word swap %d6 # get u4 mov.w %d6, %d5 # rb + u4 divu.w %d7, %d5 swap %d1 mov.w %d5, %d1 # 2nd quotient 'digit' clr.w %d5 swap %d5 # now remainder mov.l %d1, %d6 # and quotient rtslddknuth:# In this algorithm, the divisor is treated as a 2 digit (word) number# which is divided into a 3 digit (word) dividend to get one quotient# digit (word). After subtraction, the dividend is shifted and the# process repeated. Before beginning, the divisor and quotient are# 'normalized' so that the process of estimating the quotient digit# will yield verifiably correct results.. clr.l DDNORMAL(%a6) # count of shifts for normalization clr.b DDSECOND(%a6) # clear flag for quotient digits clr.l %d1 # %d1 will hold trial quotientlddnchk: btst &31, %d7 # must we normalize? first word of bne.b lddnormalized # divisor (V1) must be >= 65536/2 addq.l &0x1, DDNORMAL(%a6) # count normalization shifts lsl.l &0x1, %d7 # shift the divisor lsl.l &0x1, %d6 # shift u4,u3 with overflow to u2 roxl.l &0x1, %d5 # shift u1,u2 bra.w lddnchklddnormalized:# Now calculate an estimate of the quotient words (msw first, then lsw).# The comments use subscripts for the first quotient digit determination. mov.l %d7, %d3 # divisor mov.l %d5, %d2 # dividend mslw swap %d2 swap %d3 cmp.w %d2, %d3 # V1 = U1 ? bne.b lddqcalc1 mov.w &0xffff, %d1 # use max trial quotient word bra.b lddadj0lddqcalc1: mov.l %d5, %d1 divu.w %d3, %d1 # use quotient of mslw/msw andi.l &0x0000ffff, %d1 # zero any remainderlddadj0:# now test the trial quotient and adjust. This step plus the# normalization assures (according to Knuth) that the trial# quotient will be at worst 1 too large. mov.l %d6, -(%sp) clr.w %d6 # word u3 left swap %d6 # in lsw positionlddadj1: mov.l %d7, %d3 mov.l %d1, %d2 mulu.w %d7, %d2 # V2q swap %d3 mulu.w %d1, %d3 # V1q mov.l %d5, %d4 # U1U2 sub.l %d3, %d4 # U1U2 - V1q swap %d4 mov.w %d4,%d0 mov.w %d6,%d4 # insert lower word (U3) tst.w %d0 # is upper word set? bne.w lddadjd1# add.l %d6, %d4 # (U1U2 - V1q) + U3 cmp.l %d2, %d4 bls.b lddadjd1 # is V2q > (U1U2-V1q) + U3 ? subq.l &0x1, %d1 # yes, decrement and recheck bra.b lddadj1lddadjd1:# now test the word by multiplying it by the divisor (V1V2) and comparing# the 3 digit (word) result with the current dividend words mov.l %d5, -(%sp) # save %d5 (%d6 already saved) mov.l %d1, %d6 swap %d6 # shift answer to ms 3 words mov.l %d7, %d5 bsr.l ldmm2 mov.l %d5, %d2 # now %d2,%d3 are trial*divisor mov.l %d6, %d3 mov.l (%sp)+, %d5 # restore dividend mov.l (%sp)+, %d6 sub.l %d3, %d6 subx.l %d2, %d5 # subtract double precision bcc ldd2nd # no carry, do next quotient digit subq.l &0x1, %d1 # q is one too large# need to add back divisor longword to current ms 3 digits of dividend# - according to Knuth, this is done only 2 out of 65536 times for random# divisor, dividend selection. clr.l %d2 mov.l %d7, %d3 swap %d3 clr.w %d3 # %d3 now ls word of divisor add.l %d3, %d6 # aligned with 3rd word of dividend addx.l %d2, %d5 mov.l %d7, %d3 clr.w %d3 # %d3 now ms word of divisor swap %d3 # aligned with 2nd word of dividend add.l %d3, %d5ldd2nd: tst.b DDSECOND(%a6) # both q words done? bne.b lddremain# first quotient digit now correct. store digit and shift the# (subtracted) dividend mov.w %d1, DDQUOTIENT(%a6) clr.l %d1 swap %d5 swap %d6 mov.w %d6, %d5 clr.w %d6 st DDSECOND(%a6) # second digit bra.w lddnormalizedlddremain:# add 2nd word to quotient, get the remainder. mov.w %d1, DDQUOTIENT+2(%a6)# shift down one word/digit to renormalize remainder. mov.w %d5, %d6 swap %d6 swap %d5 mov.l DDNORMAL(%a6), %d7 # get norm shift count beq.b lddrn subq.l &0x1, %d7 # set for loop countlddnlp: lsr.l &0x1, %d5 # shift into %d6 roxr.l &0x1, %d6 dbf %d7, lddnlplddrn: mov.l %d6, %d5 # remainder mov.l DDQUOTIENT(%a6), %d6 # quotient rtsldmm2:# factors for the 32X32->64 multiplication are in %d5 and %d6.# returns 64 bit result in %d5 (hi) %d6(lo).# destroys %d2,%d3,%d4.# multiply hi,lo words of each factor to get 4 intermediate products mov.l %d6, %d2 mov.l %d6, %d3 mov.l %d5, %d4 swap %d3 swap %d4 mulu.w %d5, %d6 # %d6 <- lsw*lsw mulu.w %d3, %d5 # %d5 <- msw-dest*lsw-source mulu.w %d4, %d2 # %d2 <- msw-source*lsw-dest mulu.w %d4, %d3 # %d3 <- msw*msw# now use swap and addx to consolidate to two longwords clr.l %d4 swap %d6 add.w %d5, %d6 # add msw of l*l to lsw of m*l product addx.w %d4, %d3 # add any carry to m*m product add.w %d2, %d6 # add in lsw of other m*l product
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -