📄 rofdenoise.m
字号:
%% ROFdenoise%% This denoising method is based on total-variation, originally proposed by% Rudin, Osher and Fatemi. In this particular case fixed point iteration% is utilized.%% For the included image, a fairly good result is obtained by using a% theta value around 12-16. A possible addition would be to analyze the% residual with an entropy function and add back areas that have a lower% entropy, i.e. there are some correlation between the surrounding pixels.% % Philippe Magiera & Carl L鰊dahl, 2008%function A = ROFdenoise(Image, Theta)[Image_h Image_w] = size(Image); g = 1; dt = 1/4; nbrOfIterations = 5;Image = double(Image);p = zeros(Image_h,Image_w,2);d = zeros(Image_h,Image_w,2);div_p = zeros(Image_h,Image_w);for i = 1:nbrOfIterations for x = 1:Image_w for y = 2:Image_h-1 div_p(y,x) = p(y,x,1) - p(y-1,x,1); end end for x = 2:Image_w-1 for y = 1:Image_h div_p(y,x) = div_p(y,x) + p(y,x,2) - p(y,x-1,2); end end % Handle boundaries div_p(:,1) = p(:,1,2); div_p(:,Image_w) = -p(:,Image_w-1,2); div_p(1,:) = p(1,:,1); div_p(Image_h,:) = -p(Image_h-1,:,1); % Update u u = Image-Theta*div_p; % Calculate forward derivatives du(:,:,2) = u(:,[2:Image_w, Image_w])-u; du(:,:,1) = u([2:Image_h, Image_h],:)-u; % Iterate d(:,:,1) = (1+(dt/Theta/g).*abs(sqrt(du(:,:,1).^2+du(:,:,2).^2))); d(:,:,2) = (1+(dt/Theta/g).*abs(sqrt(du(:,:,1).^2+du(:,:,2).^2))); p = (p-(dt/Theta).*du)./d; endA = u;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -