📄 mnn_device.asv
字号:
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% mNN_device(n,date,iterations) - gradient descent procedure for Matrix
% neural network training.
%
% Parameters: network - neural network with matrix networks
% data - training data sample
% iterations - how many iterations to perform training
%
% Author: Povilas Daniu餴s, paralax@hacker.lt
% http://ai.hacker.lt - lithuanian site about Artificial Intelligence.
%
% TODO: weighted MSE minimization, maximal likelihood method, multiple
% activation function support.
% ----------------------------------------------------------------------
function f = mNN_device(n,alpha,msize)
ro = msize(1);
co = msize(2);
for i=1:n
left(i).w = alpha*(2*rand(1, ro) - 1);
right(i).w = alpha*(2*rand(co, 1) - 1);
d_left(i,:) = zeros(1,ro); %derivatives
d_right(i,:) = zeros(co,1);
dleft(i,:) = zeros(1,ro); %deltas
dright(i,:) = zeros(co,1);
end
f.regressors = n;
f.left = left;
f.right = right;
f.d_left = d_left;
f.d_right = d_right;
f.dleft = dleft;
f.dright = dright;
f.d_b = zeros(1,n);
f.weights = 2*rand(1,n+1) - 1;
f.dweights = zeros(1,n+1);
f.d = zeros(1,n+1);
f.bias = alpha*(2*rand(1,n) - 1);
f.dbias = zeros(i,n);
f.numparams = n+1 + n*(ro + co + 1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -