📄 seqsrch.m
字号:
function [input_index, elapsed_time] = ...
seqsrch(in_n, trn_data, chk_data, input_name, mf_n, epoch_n)
%SEQSRCH Sequential forward search for input selection in ANFIS modeling
% SEQSRCH performs a sequential forward search on selecting 1 to 4 inputs
% from a set of input candidates for ANFIS modeling.
% SEQSRCH will launches (2*M-N+1)*N/2 ANFIS modeling processes if we want
% to select N inputs from M candidates.
%
% Usage:
% [INPUT_INDEX, ELAPSED_TIME] = ...
% SEQSRCH(IN_N, TRN_DATA, CHK_DATA, INPUT_NAME, MF_N, EPOCH_N)
%
% INPUT_INDEX: index of the inputs selected by SEQSRCH
% ELAPSED_TIME: elapsed time in input selection
% IN_N: number of inputs to be selected from the input candidates
% (This is restricted to be from 1 to 4.)
% TRN_DATA: original training data
% CHK_DATA: original checking data
% INPUT_NAME: input name for all input candidates
% (Optional, default to 'in1', 'in2', 'in3', etc.)
% MF_N: no. of membership function for each input
% (Optional, default to 2.)
% EPOCH_N: no. of training epochs for ANFIS
% (Optional, default to 1.)
%
% Type SEQSRCH for a self demo on selecting inputs for automobile
% MPG (miles per gallon) prediction.
%
% See also EXHSRCH.
% Copyright 1994-2002 The MathWorks, Inc.
% $Revision: 1.8 $
% Roger Jang, August 1997
if nargin < 6, epoch_n = 1; end
if nargin < 5, mf_n = 2; end
if nargin == 3,
input_name = 'in1';
for i = 2:size(trn_data,2)-1,
input_name = str2mat(input_name, ['in', num2str(i)]);
end
end
if nargin < 3 & nargin ~= 0,
error('Need at least three input arguments.');
end
if nargin == 0, % Self demo (and test too)
% Dryer data
drydata;
trn_data_n = 300;
trn_data = data(1:trn_data_n, :);
chk_data = data(trn_data_n+1:size(data,1), :);
[input_index, elapsed_time] = seqsrch(3,trn_data,chk_data,input_name);
fprintf('\nIndices of selected inputs:\n');
disp(input_index);
fprintf('Elapsed time in input selection: %.3f\n', elapsed_time);
return;
% Box-Jenkin gas furnace data
load bjdata.dat
output = bjdata(:, 1);
input = bjdata(:, 2:11);
data = [input output];
input_name = str2mat('y(k)', 'y(k-1)', 'y(k-2)', 'y(k-3)', ...
'u(k)', 'u(k-1)', 'u(k-2)', 'u(k-3)', 'u(k-4)', 'u(k-5)');
trn_data = data( 1:145, :);
chk_data = data(146:290, :);
seqsrch(2, trn_data, chk_data, input_name, 3);
return;
% MPG prediction
[data, input_name] = loadgas;
trn_data = data(1:2:size(data, 1), :);
chk_data = data(2:2:size(data, 1), :);
seqsrch(4, trn_data, chk_data, input_name);
return;
end
if in_n < 1 | in_n > 4,
error([mfilename, ...
' only selects 1 to 4 input variables from all input candidates.']);
end
all_in_n = size(trn_data, 2)-1;
t0 = clock;
% ======= Training options
mf_type = 'gbellmf';
ss = 0.1;
ss_dec_rate = 0.5;
ss_inc_rate = 1.5;
anfis_n = (2*all_in_n-in_n+1)*in_n/2;
index = zeros(anfis_n, in_n);
all_input_index = zeros(anfis_n, in_n);
all_trn_error = zeros(anfis_n, 1);
all_chk_error = zeros(anfis_n, 1);
% ====== Train ANFIS with different input variables
input_index = [];
trn_error = realmax*ones(1, all_in_n);
chk_error = realmax*ones(1, all_in_n);
model = 1;
for i=1:in_n,
fprintf('\nSelecting input %d ...\n', i);
for j=1:size(trn_data,2)-1,
if isempty(input_index) | isempty(find(input_index==j)),
current_input_index = [input_index, j];
this_trn_data = trn_data(:, [current_input_index, all_in_n+1]);
this_chk_data = chk_data(:, [current_input_index, all_in_n+1]);
in_fismat = genfis1(this_trn_data, mf_n, mf_type);
[trn_out_fismat t_err step_size chk_out_fismat c_err] = ...
anfis(this_trn_data, in_fismat, ...
[epoch_n nan ss ss_dec_rate ss_inc_rate], ...
[0 0 0 0], this_chk_data, 1);
trn_error(j) = min(t_err);
chk_error(j) = min(c_err);
fprintf('ANFIS model %d:', model);
for k = 1:length(current_input_index),
fprintf(' %s', deblank(input_name(current_input_index(k), :)));
end
fprintf(' --> trn=%.4f,', trn_error(j));
fprintf(' chk=%.4f', chk_error(j));
fprintf('\n');
all_input_index(model,1:length(current_input_index)) = current_input_index;
all_trn_error(model, 1) = trn_error(j);
all_chk_error(model, 1) = chk_error(j);
model = model+1;
end
end
[a,b] = min(trn_error);
input_index = [input_index, b];
input_index = sort(input_index);
fprintf('Currently selected inputs:');
for p = 1:length(input_index),
fprintf(' %s', deblank(input_name(input_index(p), :)));
end
fprintf('\n');
end
% ====== Generate input_index for further training, if necessary.
[a, b] = min(all_trn_error);
input_index = all_input_index(b, :);
input_index(find(input_index==0))=[];
input_index = sort(input_index);
elapsed_time = etime(clock, t0);
% ====== Display training and checking errors
figTitle = ['Sequential ANFIS Input Selection: Select ', num2str(in_n), ...
' inputs from ', num2str(all_in_n), ' candidates'];
figH = findobj(0, 'name', figTitle);
if isempty(figH),
figH = figure('Name', figTitle, 'NumberTitle', 'off');
else
set(0, 'currentfig', figH);
end
[a, b] = sort(all_trn_error);
all_trn_error = all_trn_error(flipud(b));
all_chk_error = all_chk_error(flipud(b));
all_input_index = all_input_index(flipud(b), :);
x = (1:anfis_n)';
subplot(211);
plot(x, all_trn_error, '-', x, all_chk_error, '-', ...
x, all_trn_error, 'o', x, all_chk_error, '*');
tmp = x(:, ones(1, 3))';
X = tmp(:);
tmp = [zeros(anfis_n, 1) max(all_trn_error, all_chk_error) nan*ones(anfis_n, 1)]';
Y = tmp(:);
hold on; plot(X, Y, 'g'); hold off;
axis([1 anfis_n -inf inf]);
set(gca, 'xticklabel', []);
% ====== Add text of input variables
for k = 1:anfis_n,
index = all_input_index(k, :);
index(find(index==0))=[];
leng = length(index);
input_string = [];
for l=1:leng,
input_string = [input_string, input_name(index(l), :), ' '];
end
text(x(k), 0, input_string);
end
h = findobj(gcf, 'type', 'text');
set(h, 'rot', 90, 'fontsize', 11, 'hori', 'right');
drawnow
title('Training (Circles) and Checking (Asterisks) Errors');
ylabel('RMSE');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -