📄 ang_pdfb.m
字号:
function insub = ang_pdfb(ang, nlev)% ANG_PDFB Determine the dfb subband that the angle fall into% insub = ang_pdfb(ang, nlev)% % Input:% ang: the angle of direction of the band in radian% nlev: 2^nlev is the number of direction band%% Output:% insub: index of the subband %% Note: An important thing to remember is that the ang is limited to -pi/2% to pi/2, but the actual angle of the complex filter is from -pi to pi.% This is because the complex filter contained a imaginary anti-symmetric% component. We consider the direction of the impulse responses is that if% we go in the positive direction, the right hand side will corresponds to% the positive (larger than zero) of the antisymmetric wave/% ^ pi/2% | /band 2^(N-1) % | / % | / % |/ + band 2^(N-1)+2^(N-2)% |----------------->% |\ -% | \ % | \ band 2^N - 1 % | b0 \ % |-pi/2% See also: PDFB_ANG% nlev = 4;% number of all sb n4 = 2^nlev;if abs(ang) > pi/2 ang = mod(ang+pi/2, pi) - pi/2;end% artang value of the smallest angleatanstrt = 1/(n4*2);% artang step from adjacent subbandatanstep = 4/(n4);% step of argtan valueif abs(ang) < pi/4 alpha = tan(ang); insub = fix( (-alpha +1)/ atanstep) + n4/2 +1;else alpha = 1/tan(ang); insub = fix( (alpha +1)/ atanstep) + 1;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -