📄 tdfbrec.m
字号:
function x = tdfbrec(y, dfbtype, fname)
% TDFBREC Directional Filterbank Reconstruction in Time domain, use in
% the dual DFB
%
% x = tdfbrec(y, dfbtype,fname)
%
% Input:
% y: subband images in a cell vector of length 2^n
% dfbtype: 'primal' or 'dual', correspond to the type of the dual pdfb
% fname: filter name to be called by DFILTERS
%
% Output:
% x: reconstructed image
%
% See also: TDFBDEC, FBREC, DFILTERS
n = log2(length(y));
if (n ~= round(n)) | (n < 0)
error('Number of reconstruction levels must be a non-negative integer');
end
if ~exist('fname','var')
fname = 'meyer'; % default implementation by the frequency method
end
if n == 0
% Simply copy input to output
x = y{1};
return;
end
% Get the diamond-shaped filters
[h0, h1] = dfilters(fname, 'r');
% Fan filters for the first two levels
% k0: filters the first dimension (row)
% k1: filters the second dimension (column)
k0 = modulate2(h0, 'c');
k1 = modulate2(h1, 'c');
% Flip back the order of the second half channels
y(2^(n-1)+1:end) = fliplr(y(2^(n-1)+1:end));
% Undo backsampling
y = rebacksamp(y);
% Tree-structured filter banks
if n == 1
% Simplest case, one level
x = fbrec(y{1}, y{2}, k0, k1, 'q', '1r', 'per');
else
% For the cases that n >= 2
% Fan filters from diamond filters
[f0, f1] = ffilters(h0, h1);
% Recombine subband outputs to the next level
for l = n:-1:3
y_old = y;
y = cell(1, 2^(l-1));
% The first half channels use R1 and R2
for k = 1:2^(l-2)
i = mod(k-1, 2) + 1;
% circlular shift to make the subband has minimum delay
for inl = 4:l
if mod(k-1, 2^(inl-2)) < 2^(inl-3)
y_old{2*k} = circshift(y_old{2*k}, [0 -2^(inl-4)]);
else
y_old{2*k} = circshift(y_old{2*k}, [0 2^(inl-4)]);
end
end
y{k} = fbrec(y_old{2*k-1}, y_old{2*k}, f0{i}, f1{i}, ...
'pq', i, 'per');
end
% The second half channels use R3 and R4
for k = 2^(l-2)+1:2^(l-1)
i = mod(k-1, 2) + 1;
y_old{2*k-1} = y_old{2*k-1}';
y_old{2*k} = y_old{2*k}';
for inl = 4:l
if mod(k-1, 2^(inl-2)) < 2^(inl-3)
y_old{2*k} = circshift(y_old{2*k}, [0 -2^(inl-4)]);
else
y_old{2*k} = circshift(y_old{2*k}, [0 2^(inl-4)]);
end
end
% if l > 3
% if mod(k-1, 4) < 2
% y_old{2*k} = circshift(y_old{2*k}, [0 -1]);
% else
% y_old{2*k} = circshift(y_old{2*k}, [0 1]);
% end
% end
% if l > 4
% if mod(k-1, 8) < 4
% y_old{2*k} = circshift(y_old{2*k}, [0 -2]);
% else
% y_old{2*k} = circshift(y_old{2*k}, [0 2]);
% end
% end
y{k} = fbrec(y_old{2*k-1}, y_old{2*k}, f0{i}, f1{i}, ...
'pq', i, 'per');
y{k} = y{k}';
end
end
if strcmp(dfbtype, 'dual')
[g0, g1] = dfilters('meyerh2', 'r');
[g2, g3] = dfilters('meyerh3', 'r');
% Second level : shift channel 4
y{4} = circshift(y{4}, [-1, 0]);
x0 = fbrec(y{1}, y{2}, g0, g1, 'q', '2c', 'qper_col');
x1 = fbrec(y{3}, y{4}, g2, g3, 'q', '2c', 'qper_col');
% First level
% remove aliasing on the high frequency
% x = fbrec(x0, x1, [zeros(2,size(k0,2)); k0 ], [zeros(size(k1,1),2), k1] , 'q', '1r', 'per');
% firstlevel of dual branch: apply delay to filters
x = fbrec(x0, x1, [k0, zeros(size(k0,1),2)], [k1; zeros(2,size(k1,2)) ] , 'q', '1r', 'per');
else
% Second level
y{4} = circshift(y{4}, [-1, 0]);
x0 = fbrec(y{1}, y{2}, k0, k1, 'q', '2c', 'qper_col');
x1 = fbrec(y{3}, y{4}, k0, k1, 'q', '2c', 'qper_col');
% First level
x = fbrec(x0, x1, k0, k1, 'q', '1r', 'per');
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -