📄 tdfbdec.m
字号:
function y = tdfbdec(x, n, dfbtype, fname)
% TDFBDEC Directional Filterbank Reconstruction in Time domain, use in
% the dual DFB
% y = tdfbdec(x, n, dfbtype,fname)
%
% Input:
% x: input image
% n: number of decomposition tree levels
% dfbtype: 'primal' or 'dual', correspond to the type of the dual pdfb
% fname: filter name to be called by DFILTERS
%
% Output:
% y: subband images in a cell vector of length 2^n
%
% Note:
% This is the general version that works with any FIR filters
%
% See also: TDFBREC, FBDEC, DFILTERS
% Note : The function is based on the dfbdec fuction of the contourlet toolbox
%
if (n ~= round(n)) | (n < 0)
error('Number of decomposition levels must be a non-negative integer');
end
if ~exist('fname','var')
fname = 'meyer'; % default implementation by the frequency method
end
if n == 0
% No decomposition, simply copy input to output
y{1} = x;
return;
end
% Get the diamond-shaped filters
[h0, h1] = dfilters(fname, 'd');
% Fan filters for the first two levels
% k0: filters the first dimension (row)
% k1: filters the second dimension (column)
k0 = modulate2(h0, 'c');
k1 = modulate2(h1, 'c');
% Tree-structured filter banks
if n == 1
% Simplest case, one level
[y{1}, y{2}] = fbdec(x, k0, k1, 'q', '1r', 'per');
else
% For the cases that n >= 2
if strcmp(dfbtype, 'dual')
[g0, g1] = dfilters('meyerh2', 'd');
[g2, g3] = dfilters('meyerh3', 'd');
% First level
% remove aliasing on the high frequency
%[x0, x1] = fbdec(x, [k0; zeros(2,size(k0,2))], [k1, zeros(size(k1,1),2)] , 'q', '1r', 'per');
% complex filter
[x0, x1] = fbdec(x, [zeros(size(k0,1),2) , k0 ], [zeros(2,size(k1,2)); k1] , 'q', '1r', 'per');
% Second level
y = cell(1, 4);
[y{1}, y{2}] = fbdec(x0, g0, g1, 'q', '2c', 'qper_col');
[y{3}, y{4}] = fbdec(x1, g2, g3, 'q', '2c', 'qper_col');
else
% First level
[x0, x1] = fbdec(x, k0, k1, 'q', '1r', 'per');
% Second level
y = cell(1, 4);
[y{1}, y{2}] = fbdec(x0, k0, k1, 'q', '2c', 'qper_col');
[y{3}, y{4}] = fbdec(x1, k0, k1, 'q', '2c', 'qper_col');
end
y{4} = circshift(y{4}, [1, 0]);
% Fan filters from diamond filters
[f0, f1] = ffilters(h0, h1);
% Now expand the rest of the tree
for l = 3:n
% Allocate space for the new subband outputs
y_old = y;
y = cell(1, 2^l);
% The first half channels use R1 and R2
for k = 1:2^(l-2)
i = mod(k-1, 2) + 1;
[y{2*k-1}, y{2*k}] = fbdec(y_old{k}, f0{i}, f1{i}, 'pq', i, 'per');
% circlular shift to make the subband has minimum delay
for inl = 4:l
if mod(k-1, 2^(inl-2)) < 2^(inl-3)
y{2*k} = circshift(y{2*k}, [0 2^(inl-4)]);
else
y{2*k} = circshift(y{2*k}, [0 -2^(inl-4)]);
end
end
end
% The second half channels are transposed
for k = 2^(l-2)+1:2^(l-1)
i = mod(k-1, 2) + 1;
[y{2*k-1}, y{2*k}] = fbdec(y_old{k}.', f0{i}, f1{i}, 'pq', i, 'per');
% circlular shift to make the subband has minimum delay
for inl = 4:l
if mod(k-1, 2^(inl-2)) < 2^(inl-3)
y{2*k} = circshift(y{2*k}, [0 2^(inl-4)]);
else
y{2*k} = circshift(y{2*k}, [0 -2^(inl-4)]);
end
end
% transpose back
y{2*k-1} = y{2*k-1}.';
y{2*k} = y{2*k}.';
end
end
end
% Back sampling (so that the overal sampling is separable)
% to enhance visualization
y = backsamp(y);
% Flip the order of the second half channels
y(2^(n-1)+1:end) = fliplr(y(2^(n-1)+1:end));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -