📄 lprec.m
字号:
function x = lprec(c, d, h, g, opt, mode)% LPDEC Pyramid Reconstruction%% x = lprec(c, d, h, g, opt,mode)%% Input:% c: coarse image at half size% d: detail image at full size% h, g: two one or two-dimesional filter, depend on opt% opt : Parameter define the mode of decomposition: % 0 : default, reconstructed by Do and Vetterli method.% See 'Framing Pyramids'% 1 : reconstructed LP by the conventional (Burt-Andelson ) method% Not a tight frame reconstruction. See EUSIPCO 06 'On Aliasing ....'% h and g are 1-D filters% 2 : no aliasing method, the lowpass filter h is nyquist 2 % g is the highpass filter, 0.25*h(w)^2+g(w)^2 = 1% h and g are 2-D filters%% mod : Optional : 'sym' and 'per' specify the extension mode of the% low pass band%% Output:% x: reconstructed image%% See also: LPDEC, PDFBREC%if ~exist('opt') opt = 0;end% mode = 'per';if ~exist('mode','var') mode = 'per';endif opt < 2 % h , g is 1-D filter ---------------------------------------- if opt % opt = 1 LP Burt-Andelson xhi = zeros(size(c)); else % opt = 0 LP Framing Pyramid % First, filter and downsample the detail image xhi = sefilter2(d, h, h, mode); xhi = xhi(1:2:end, 1:2:end); end % Subtract from the coarse image, and then upsample and filter xlo = c - xhi; xlo = dup(xlo, [2, 2]); % Even size filter needs to be adjusted to obtain % perfect reconstruction with zero shift adjust = mod(length(g) + 1, 2); xlo = sefilter2(xlo, g, g, mode, adjust * [1, 1]); % Final combination x = xlo + d;else % h , g is 2-D filter ---------------------------------------- % filtered x_u = kron(c, [1 0 ; 0 0]); x = efilter2(d, g,'sym') + efilter2(x_u, 2*h,'sym');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -