⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pdfb_ang.m

📁 PDTDFB toolbox The filter bank is described in: The Shiftable Complex Directional Pyramid—Pa
💻 M
字号:
function ang= pdfb_ang(insub, nlev)% PDFB_ANG Determine the dfb subband that the angle fall into%       ang = pdfb_ang(insub, nlev)% % Returning value ang is from 3pi*4 to -pi/4 to make the range of value% change continuosly from band 1 to 2^nlev% Input:%   insub:  index of the subband from 1 to 2^nlev%   nlev:   2^nlev is the number of direction band%% Output:%   ang:	the angle of direction of the band in radian%% Note:% Note: An important thing to remember is that the ang is limited to -pi/2% to pi/2, but the actual angle of the complex filter is from -pi to pi.% This is because the complex filter contained a imaginary anti-symmetric% component. We consider the direction of the impulse responses is that if% we go in the positive direction, the right hand side will corresponds to% the positive (larger than zero) of an antisymmetric wave (forexample,% sine function)%                               ^ pi/2%                        \      |      /band 2^(N-1)  %                          \    |    /    %                            \  |  / %                              \|/   +  band 2^(N-1)+2^(N-2)%                               |----------------->%                               |\   -%                               |  \  %                               |    \  band 2^N - 1 %                               |   b0 \ %                               |-pi/2% See also: ANG_PDFB% number of all sb n4 = 2^(nlev-2);% artang value of the smallest angleatanstrt = 1/(n4*2);% artang step from adjacent subbandatanstep = 1/(n4);atanv = atanstrt:atanstep:atanstrt+atanstep*(n4-1);% correspoding angle value in radianangsb = atan(atanv);angsbrev = fliplr(angsb);% angle of the four group of direction subbandsaq1 = angsbrev + pi/2;aq2 = -fliplr(angsbrev - pi/2);aq3 = angsbrev;aq4 = -fliplr(aq3);aq = [aq1, aq2, aq3, aq4];ang = aq(insub);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -