📄 rmsc.m
字号:
% RMSC: Computes the Relevance Moment Selection Criterion
%
% SYNTAX: rmsc_stat = rmsc(p_vec, detVar_vec, q_vec, tau_vec)
%
% INPUT
% p_vec : A vector with the number of estimated parameters in each model you study
% detVar_vec : A vector with the values of the determinant of the estimates' variance.
% If you want to compare k different models(k>=1), detV must be a kx1 vector
% where its entries are determinant of the estimate's variance for each model.
% qvec : A vector with the number of moments for each of the models you
% want to compare.
% tau_vec : A vector with the value of tau, that will be used for the penalty term of each model.
% If the moments are martingale differences, set tau = T^0.5, otherwise set it equal to (T/b)^0.5
% where T is the number of observations and b is the bandwidth used for the kernel estimation of
% the HAC covariance matrix
%
% OUTPUT
% rmsc_stat : A kx1 vector with the values of the RMSC statistic. The order
% of the elements is the same as the order of Jvec, qvec, etc.
% The 1st entry is the RMSC of model_1, the 2nd is the RMSC of model_2, etc
function rmsc_stat = rmsc(p_vec, detVar_vec, q_vec, tau_vec)
% Error check
if nargin<4
error('All the inputs are required for the estimation')
end
ratio = log(tau_vec)./tau_vec;
rmsc_stat = log(detVar_vec) + (q_vec - p_vec).*ratio;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -