⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 index.html

📁 一个功能强大的神经网络分析程序
💻 HTML
📖 第 1 页 / 共 2 页
字号:
><AHREF="r1323.html">fann_set_rprop_decrease_factor</A>&nbsp;--&nbsp;Set the decrease factor used by RPROP training.</DT><DT><AHREF="r1341.html">fann_get_rprop_delta_min</A>&nbsp;--&nbsp;Get the minimum step-size used by RPROP training.</DT><DT><AHREF="r1356.html">fann_set_rprop_delta_min</A>&nbsp;--&nbsp;Set the minimum step-size used by RPROP training.</DT><DT><AHREF="r1374.html">fann_get_rprop_delta_max</A>&nbsp;--&nbsp;Get the maximum step-size used by RPROP training.</DT><DT><AHREF="r1389.html">fann_set_rprop_delta_max</A>&nbsp;--&nbsp;Set the maximum step-size used by RPROP training.</DT><DT><AHREF="r1407.html">fann_get_num_input</A>&nbsp;--&nbsp;Get the number of neurons in the input layer.</DT><DT><AHREF="r1422.html">fann_get_num_output</A>&nbsp;--&nbsp;Get number of neurons in the output layer.</DT><DT><AHREF="r1437.html">fann_get_total_neurons</A>&nbsp;--&nbsp;Get the total number of neurons in a network.</DT><DT><AHREF="r1452.html">fann_get_total_connections</A>&nbsp;--&nbsp;Get the total number of connections in a network.</DT><DT><AHREF="r1467.html">fann_get_decimal_point</A>&nbsp;--&nbsp;Get the position of the decimal point.</DT><DT><AHREF="r1483.html">fann_get_multiplier</A>&nbsp;--&nbsp;Get the multiplier.</DT></DL></DD><DT>5.6. <AHREF="x1499.html">Error Handling</A></DT><DD><DL><DT><AHREF="r1501.html">fann_get_errno</A>&nbsp;--&nbsp;Return the numerical representation of the last error.</DT><DT><AHREF="r1516.html">fann_get_errstr</A>&nbsp;--&nbsp;Return the last error.</DT><DT><AHREF="r1533.html">fann_reset_errno</A>&nbsp;--&nbsp;Reset the last error number.</DT><DT><AHREF="r1547.html">fann_reset_errstr</A>&nbsp;--&nbsp;Reset the last error string.</DT><DT><AHREF="r1561.html">fann_set_error_log</A>&nbsp;--&nbsp;Set the error log to a file descriptor.</DT><DT><AHREF="r1580.html">fann_print_error</A>&nbsp;--&nbsp;Print the last error to the error log.</DT></DL></DD><DT>5.7. <AHREF="x1595.html">Data Structures</A></DT><DD><DL><DT><AHREF="r1597.html">struct fann</A>&nbsp;--&nbsp;Describes a neural network.</DT><DT><AHREF="r1837.html">struct fann_train_data</A>&nbsp;--&nbsp;Describes a set of training data.</DT><DT><AHREF="r1900.html">struct fann_error</A>&nbsp;--&nbsp;Describes an error.</DT><DT><AHREF="r1936.html">struct fann_neuron</A>&nbsp;--&nbsp;Describes an individual neuron.</DT><DT><AHREF="r1970.html">struct fann_layer</A>&nbsp;--&nbsp;Describes a layer in a network.</DT></DL></DD><DT>5.8. <AHREF="x1994.html">Constants</A></DT><DD><DL><DT><AHREF="r1996.html">Training algorithms</A>&nbsp;--&nbsp;Constants representing training algorithms.</DT><DT><AHREF="r2030.html">Activation Functions</A>&nbsp;--&nbsp;Constants representing activation functions.</DT><DT><AHREF="r2077.html">Training Error Functions</A>&nbsp;--&nbsp;Constants representing errors functions.</DT><DT><AHREF="r2099.html">Error Codes</A>&nbsp;--&nbsp;Constants representing errors.</DT></DL></DD><DT>5.9. <AHREF="x2169.html">Internal Functions</A></DT><DD><DL><DT>5.9.1. <AHREF="x2169.html#api.sec.create_destroy.internal">Creation And Destruction</A></DT><DT>5.9.2. <AHREF="x2169.html#api.sec.io.internal">Input/Output</A></DT><DT>5.9.3. <AHREF="x2169.html#api.sec.train_data.internal">Training Data</A></DT><DT>5.9.4. <AHREF="x2169.html#api.sec.io.errors">Error Handling</A></DT><DT>5.9.5. <AHREF="x2169.html#api.sec.options.internal">Options</A></DT></DL></DD><DT>5.10. <AHREF="x2399.html">Deprecated Functions</A></DT><DD><DL><DT>5.10.1. <AHREF="x2399.html#api.sec.error.deprecated">Mean Square Error</A></DT><DT>5.10.2. <AHREF="x2399.html#api.sec.steepness.deprecated">Get and set activation function steepness.</A></DT></DL></DD></DL></DD><DT>6. <AHREF="c2519.html">PHP Extension</A></DT><DD><DL><DT>6.1. <AHREF="c2519.html#php.install">Installation</A></DT><DD><DL><DT>6.1.1. <AHREF="c2519.html#php.install.pear">Using PEAR</A></DT><DT>6.1.2. <AHREF="c2519.html#php.install.ext">Compiling into PHP</A></DT></DL></DD><DT>6.2. <AHREF="x2553.html">API Reference</A></DT><DD><DL><DT><AHREF="r2555.html">fann_create</A>&nbsp;--&nbsp;Creates an artificial neural network.</DT><DT><AHREF="r2597.html">fann_train</A>&nbsp;--&nbsp;Train an artificial neural network.</DT><DT><AHREF="r2641.html">fann_save</A>&nbsp;--&nbsp;Save an artificial neural network to a file.</DT><DT><AHREF="r2664.html">fann_run</A>&nbsp;--&nbsp;Run an artificial neural network.</DT><DT><AHREF="r2688.html">fann_randomize_weights</A>&nbsp;--&nbsp;Randomize the weights of the neurons in the network.</DT><DT><AHREF="r2714.html">fann_init_weights</A>&nbsp;--&nbsp;Initialize the weight of each connection.</DT><DT><AHREF="r2740.html">fann_get_MSE</A>&nbsp;--&nbsp;Get the mean squared error.</DT><DT><AHREF="r2756.html">fann_get_num_input</A>&nbsp;--&nbsp;Get the number of input neurons.</DT><DT><AHREF="r2777.html">fann_get_num_output</A>&nbsp;--&nbsp;Get the number of output neurons.</DT><DT><AHREF="r2798.html">fann_get_total_neurons</A>&nbsp;--&nbsp;Get the total number of neurons.</DT><DT><AHREF="r2819.html">fann_get_total_connections</A>&nbsp;--&nbsp;Get the total number of connections.</DT><DT><AHREF="r2835.html">fann_get_learning_rate</A>&nbsp;--&nbsp;Get the learning rate.</DT><DT><AHREF="r2854.html">fann_get_activation_function_hidden</A>&nbsp;--&nbsp;Get the activation function of the hidden neurons.</DT><DT><AHREF="r2873.html">fann_get_activation_function_output</A>&nbsp;--&nbsp;Get the activation function of the output neurons.</DT><DT><AHREF="r2892.html">fann_get_activation_steepness_hidden</A>&nbsp;--&nbsp;Get the steepness of the activation function for the hidden neurons.</DT><DT><AHREF="r2911.html">fann_get_activation_steepness_output</A>&nbsp;--&nbsp;Get the steepness of the activation function for the output neurons.</DT><DT><AHREF="r2930.html">fann_set_learning_rate</A>&nbsp;--&nbsp;Set the learning rate.</DT><DT><AHREF="r2949.html">fann_set_activation_function_hidden</A>&nbsp;--&nbsp;Set the activation function for the hidden neurons.</DT><DT><AHREF="r2971.html">fann_set_activation_function_output</A>&nbsp;--&nbsp;Set the activation function for the output neurons.</DT><DT><AHREF="r2993.html">fann_set_activation_steepness_hidden</A>&nbsp;--&nbsp;Set the steepness of the activation function for the hidden neurons.</DT><DT><AHREF="r3015.html">fann_set_activation_steepness_output</A>&nbsp;--&nbsp;Set the steepness of the activation function for the output neurons.</DT></DL></DD></DL></DD><DT>7. <AHREF="c3037.html">Python Bindings</A></DT><DD><DL><DT>7.1. <AHREF="c3037.html#python.install">Python Install</A></DT></DL></DD><DT><AHREF="b3048.html">Bibliography</A></DT></DL></DIV><DIVCLASS="LOT"><DLCLASS="LOT"><DT><B>List of Examples</B></DT><DT>1-1. <AHREF="x68.html#example.simple_train">Simple training example</A></DT><DT>1-2. <AHREF="x68.html#example.simple_exec">Simple execution example</A></DT><DT>2-1. <AHREF="x161.html#example.train_on_file_internals">The internals of the <CODECLASS="function">fann_train_on_file</CODE> function, without writing the status line.</A></DT><DT>2-2. <AHREF="x161.html#example.calc_mse">Test all of the data in a file and calculates the mean square error.</A></DT><DT>3-1. <AHREF="c189.html#example.train_fixed">An example of a program written to support training in both fixed point and floating point numbers</A></DT><DT>3-2. <AHREF="x203.html#example.exec_fixed">An example of a program written to support both fixed point and floating point numbers</A></DT><DT>5-1. <AHREF="r285.html#example.api.fann_create_array"><CODECLASS="function">fann_create_array</CODE> example</A></DT><DT>6-1. <AHREF="r2555.html#example.php.fann_create.scratch"><CODECLASS="function">fann_create</CODE> from scratch</A></DT><DT>6-2. <AHREF="r2555.html#example.php.fann_create.load"><CODECLASS="function">fann_create</CODE> loading from a file</A></DT><DT>6-1. <AHREF="r2597.html#example.php.fann_train"><CODECLASS="function">fann_create</CODE> from training data</A></DT><DT>6-1. <AHREF="r2664.html#example.php.fann_run"><CODECLASS="function">fann_run</CODE>Example</A></DT></DL></DIV></DIV><DIVCLASS="NAVFOOTER"><HRALIGN="LEFT"WIDTH="100%"><TABLESUMMARY="Footer navigation table"WIDTH="100%"BORDER="0"CELLPADDING="0"CELLSPACING="0"><TR><TDWIDTH="33%"ALIGN="left"VALIGN="top">&nbsp;</TD><TDWIDTH="34%"ALIGN="center"VALIGN="top">&nbsp;</TD><TDWIDTH="33%"ALIGN="right"VALIGN="top"><AHREF="c13.html"ACCESSKEY="N">Next</A></TD></TR><TR><TDWIDTH="33%"ALIGN="left"VALIGN="top">&nbsp;</TD><TDWIDTH="34%"ALIGN="center"VALIGN="top">&nbsp;</TD><TDWIDTH="33%"ALIGN="right"VALIGN="top">Introduction</TD></TR></TABLE></DIV></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -