⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 x938.html

📁 一个功能强大的神经网络分析程序
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd"><HTML><HEAD><TITLE>Options</TITLE><link href="../style.css" rel="stylesheet" type="text/css"><METANAME="GENERATOR"CONTENT="Modular DocBook HTML Stylesheet Version 1.79"><LINKREL="HOME"TITLE="Fast Artificial Neural Network Library"HREF="index.html"><LINKREL="UP"TITLE="API Reference"HREF="c253.html"><LINKREL="PREVIOUS"TITLE="fann_duplicate_train_data"HREF="r922.html"><LINKREL="NEXT"TITLE="fann_print_parameters"HREF="r940.html"></HEAD><BODYCLASS="section"BGCOLOR="#FFFFFF"TEXT="#000000"LINK="#0000FF"VLINK="#840084"ALINK="#0000FF"><DIVCLASS="NAVHEADER"><TABLESUMMARY="Header navigation table"WIDTH="100%"BORDER="0"CELLPADDING="0"CELLSPACING="0"><TR><THCOLSPAN="3"ALIGN="center">Fast Artificial Neural Network Library</TH></TR><TR><TDWIDTH="10%"ALIGN="left"VALIGN="bottom"><AHREF="r922.html"ACCESSKEY="P">Prev</A></TD><TDWIDTH="80%"ALIGN="center"VALIGN="bottom">Chapter 5. API Reference</TD><TDWIDTH="10%"ALIGN="right"VALIGN="bottom"><AHREF="r940.html"ACCESSKEY="N">Next</A></TD></TR></TABLE><HRALIGN="LEFT"WIDTH="100%"></DIV><DIVCLASS="section"><H1CLASS="section"><ANAME="api.sec.options">5.5. Options</A></H1><DIVCLASS="TOC"><DL><DT><B>Table of Contents</B></DT><DT><AHREF="r940.html">fann_print_parameters</A>&nbsp;--&nbsp;Prints all of the parameters and options of the ANN.</DT><DT><AHREF="r954.html">fann_get_training_algorithm</A>&nbsp;--&nbsp;Retrieve training algorithm from a network.</DT><DT><AHREF="r972.html">fann_set_training_algorithm</A>&nbsp;--&nbsp;Set a network's training algorithm.</DT><DT><AHREF="r993.html">fann_get_learning_rate</A>&nbsp;--&nbsp;Retrieve learning rate from a network.</DT><DT><AHREF="r1007.html">fann_set_learning_rate</A>&nbsp;--&nbsp;Set a network's learning rate.</DT><DT><AHREF="r1024.html">fann_get_activation_function_hidden</A>&nbsp;--&nbsp;Get the activation function used in the hidden layers.</DT><DT><AHREF="r1040.html">fann_set_activation_function_hidden</A>&nbsp;--&nbsp;Set the activation function for the hidden layers.</DT><DT><AHREF="r1060.html">fann_get_activation_function_output</A>&nbsp;--&nbsp;Get the activation function of the output layer.</DT><DT><AHREF="r1076.html">fann_set_activation_function_output</A>&nbsp;--&nbsp;Set the activation function for the output layer.</DT><DT><AHREF="r1096.html">fann_get_activation_steepness_hidden</A>&nbsp;--&nbsp;Retrieve the steepness of the activation function of the hidden layers.</DT><DT><AHREF="r1112.html">fann_set_activation_steepness_hidden</A>&nbsp;--&nbsp;Set the steepness of the activation function of the hidden layers.</DT><DT><AHREF="r1133.html">fann_get_activation_steepness_output</A>&nbsp;--&nbsp;Retrieve the steepness of the activation function of the output layer.</DT><DT><AHREF="r1149.html">fann_set_activation_steepness_output</A>&nbsp;--&nbsp;Set the steepness of the activation function of the output layer.</DT><DT><AHREF="r1170.html">fann_set_train_error_function</A>&nbsp;--&nbsp;Sets the training error function to be used.</DT><DT><AHREF="r1191.html">fann_get_train_error_function</A>&nbsp;--&nbsp;Gets the training error function to be used.</DT><DT><AHREF="r1209.html">fann_get_quickprop_decay</A>&nbsp;--&nbsp;Get the decay parameter used by the quickprop training.</DT><DT><AHREF="r1224.html">fann_set_quickprop_decay</A>&nbsp;--&nbsp;Set the decay parameter used by the quickprop training.</DT><DT><AHREF="r1242.html">fann_get_quickprop_mu</A>&nbsp;--&nbsp;Get the mu factor used by quickprop training.</DT><DT><AHREF="r1257.html">fann_set_quickprop_mu</A>&nbsp;--&nbsp;Set the mu factor used by quickprop training.</DT><DT><AHREF="r1275.html">fann_get_rprop_increase_factor</A>&nbsp;--&nbsp;Get the increase factor used by RPROP training.</DT><DT><AHREF="r1290.html">fann_set_rprop_increase_factor</A>&nbsp;--&nbsp;Get the increase factor used by RPROP training.</DT><DT><AHREF="r1308.html">fann_get_rprop_decrease_factor</A>&nbsp;--&nbsp;Get the decrease factor used by RPROP training.</DT><DT><AHREF="r1323.html">fann_set_rprop_decrease_factor</A>&nbsp;--&nbsp;Set the decrease factor used by RPROP training.</DT><DT><AHREF="r1341.html">fann_get_rprop_delta_min</A>&nbsp;--&nbsp;Get the minimum step-size used by RPROP training.</DT><DT><AHREF="r1356.html">fann_set_rprop_delta_min</A>&nbsp;--&nbsp;Set the minimum step-size used by RPROP training.</DT><DT><AHREF="r1374.html">fann_get_rprop_delta_max</A>&nbsp;--&nbsp;Get the maximum step-size used by RPROP training.</DT><DT><AHREF="r1389.html">fann_set_rprop_delta_max</A>&nbsp;--&nbsp;Set the maximum step-size used by RPROP training.</DT><DT><AHREF="r1407.html">fann_get_num_input</A>&nbsp;--&nbsp;Get the number of neurons in the input layer.</DT><DT><AHREF="r1422.html">fann_get_num_output</A>&nbsp;--&nbsp;Get number of neurons in the output layer.</DT><DT><AHREF="r1437.html">fann_get_total_neurons</A>&nbsp;--&nbsp;Get the total number of neurons in a network.</DT><DT><AHREF="r1452.html">fann_get_total_connections</A>&nbsp;--&nbsp;Get the total number of connections in a network.</DT><DT><AHREF="r1467.html">fann_get_decimal_point</A>&nbsp;--&nbsp;Get the position of the decimal point.</DT><DT><AHREF="r1483.html">fann_get_multiplier</A>&nbsp;--&nbsp;Get the multiplier.</DT></DL></DIV></DIV><DIVCLASS="NAVFOOTER"><HRALIGN="LEFT"WIDTH="100%"><TABLESUMMARY="Footer navigation table"WIDTH="100%"BORDER="0"CELLPADDING="0"CELLSPACING="0"><TR><TDWIDTH="33%"ALIGN="left"VALIGN="top"><AHREF="r922.html"ACCESSKEY="P">Prev</A></TD><TDWIDTH="34%"ALIGN="center"VALIGN="top"><AHREF="index.html"ACCESSKEY="H">Home</A></TD><TDWIDTH="33%"ALIGN="right"VALIGN="top"><AHREF="r940.html"ACCESSKEY="N">Next</A></TD></TR><TR><TDWIDTH="33%"ALIGN="left"VALIGN="top">fann_duplicate_train_data</TD><TDWIDTH="34%"ALIGN="center"VALIGN="top"><AHREF="c253.html"ACCESSKEY="U">Up</A></TD><TDWIDTH="33%"ALIGN="right"VALIGN="top">fann_print_parameters</TD></TR></TABLE></DIV></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -