⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fann.xml

📁 一个功能强大的神经网络分析程序
💻 XML
📖 第 1 页 / 共 5 页
字号:
              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>          </methodsynopsis>          <para>            <function>fann_destroy</function> will destroy an artificial neural network, properly freeing all associate	    memory.	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_run">        <refnamediv>          <refname>fann_run</refname>          <refpurpose>Run (execute) an ANN.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>fann_type *</type>            <methodname>fann_run</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>fann_type *</type>              <parameter>input</parameter>            </methodparam>          </methodsynopsis>          <para>	    <function>fann_run</function> will run <parameter>input</parameter> through <parameter>ann</parameter>,	    returning an array of outputs, the number of which being equal to the number of neurons in the output	    layer.	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_randomize_weights">        <refnamediv>          <refname>fann_randomize_weights</refname>          <refpurpose>Give each connection a random weight.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_randomize_weights</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>fann_type</type>              <parameter>min_weight</parameter>            </methodparam>            <methodparam>              <type>fann_type</type>              <parameter>max_height</parameter>            </methodparam>          </methodsynopsis>          <para>	    Randomizes the weight of each connection in <parameter>ann</parameter>, effectively resetting the network.	  </para>	  <para>	    See also: <link linkend="adv.adj" endterm="adv.adj.title" />,	    <link linkend="api.fann_init_weights"><function>fann_init_weights</function></link>	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_init_weights">        <refnamediv>          <refname>fann_init_weights</refname>          <refpurpose>Initialize the weight of each connection.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_init_weights</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>struct fann_train_data *</type>              <parameter>train_data</parameter>            </methodparam>          </methodsynopsis>          <para>	    This function behaves similarly to <link linkend="api.fann_randomize_weights"><function>fann_randomize_weights</function></link>.	    It will use the algorithm developed by Derrick Nguyen and Bernard Widrow	    [<link linkend="bib.nguyen_1990" endterm="bib.nguyen_1990.abbrev" />] to set the weights in such a way as to speed up training.	    This technique is not always successful, and in some cases can be <emphasis>less</emphasis> efficient than a purely random	    initialization.	  </para>	  <para>	    The algorithm requires access to the range of the input data (ie, largest and smallest input), and therefore accepts a second	    argument, <parameter>data</parameter>, which is the training data that will be used to train the network.	  </para>	  <para>	    See also: <link linkend="adv.adj" endterm="adv.adj.title" />,	    <link linkend="api.fann_randomize_weights"><function>fann_randomize_weights</function></link>	  </para>          <para>This function appears in FANN &gt;= 1.1.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_print_connections">        <refnamediv>          <refname>fann_print_connections</refname>          <refpurpose>Prints the connections of an ann.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_print_connections</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>          </methodsynopsis>          <para>            <function>fann_print_connections</function> will print the connections of the ann in a compact matrix, for easy viewing of the internals of the ann.	  </para>        <para>	  The output from fann_print_connections on a small (2 2 1) network trained on the xor problem:	  <literallayout class="monospaced" id="api.fann_print_connections.output">Layer / Neuron 012345L   1 / N    3 ddb...L   1 / N    4 bbb...L   2 / N    6 ...cda	  </literallayout> This network have five real neurons and two bias neurons. This gives a total of seven neurons named from 0 to 6. The connections between these neurons can be seen in the matrix. <constant>"."</constant> is a place where there is no connection, while a character tells how strong the connection is on a scale from a-z. The two real neurons in the hidden layer (neuron <constant>3</constant> and <constant>4</constant> in layer <constant>1</constant>) has connection from the three neurons in the previous layer as is visible in the first two lines. The output neuron (<constant>6</constant>) has connections form the three neurons in the hidden layer <constant>3 - 5</constant> as is visible in the last line.	</para>	<para> To simplify the matrix output neurons is not visible as neurons that connections can come from, and input and bias neurons are not visible as neurons that connections can go to.	</para>          <para>This function appears in FANN &gt;= 1.2.0.</para>        </refsect1>      </refentry>    </section>    <section id="api.sec.io">      <title id="api.sec.io.title">Input/Output</title>      <refentry id="api.fann_save">        <refnamediv>          <refname>fann_save</refname>          <refpurpose>Save an ANN to a file.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_save</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>const char *</type>              <parameter>configuration_file</parameter>            </methodparam>          </methodsynopsis>          <para>            <function>fann_save</function> will attempt to save <parameter>ann</parameter> to the file located at             <parameter>configuration_file</parameter>	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_save_to_fixed">        <refnamediv>          <refname>fann_save_to_fixed</refname>          <refpurpose>Save an ANN to a fixed-point file.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_save_to_fixed</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>const char *</type>              <parameter>configuration_file</parameter>            </methodparam>          </methodsynopsis>          <para>            <function>fann_save_to_fixed</function> will attempt to save <parameter>ann</parameter> to the file located at	    <parameter>configuration_file</parameter> as a fixed-point network.	  </para>	  <para>	    This is useful for training a network in floating points,	    and then later executing it in fixed point.	  </para>	  <para>	    The function returns the bit position of the fix point, which	    can be used to find out how accurate the fixed point network will be.	    A high value indicates high precision, and a low value indicates low	    precision.	  </para>	  <para>	    A negative value indicates very low precision, and a very	    strong possibility for overflow.	    (the actual fix point will be set to 0, since a negative	    fix point does not make sense).	  </para>	  <para>	    Generally, a fix point lower than 6 is bad, and should be avoided.	    The best way to avoid this, is to have less connections to each neuron,	    or just less neurons in each layer.	  </para>	  <para>	    The fixed point use of this network is only intended for use on machines that	    have no floating point processor, like an iPAQ. On normal computers the floating	    point version is actually faster.	  </para>	  <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_create_from_file">        <refnamediv>          <refname>fann_create_from_file</refname>          <refpurpose>Load an ANN from a file.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>struct fann *</type>            <methodname>fann_create_from_file</methodname>            <methodparam>              <type>const char *</type>              <parameter>configuration_file</parameter>            </methodparam>          </methodsynopsis>          <para>            <function>fann_create_from_file</function>will attempt to load an artificial neural network from a file.	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>    </section>    <section id="api.sec.train_algo">      <title id="api.sec.train_algo.title">Training</title>      <refentry id="api.fann_train">        <refnamediv>          <refname>fann_train</refname>          <refpurpose>Train an ANN.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>void</type>            <methodname>fann_train</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>            </methodparam>            <methodparam>              <type>fann_type *</type>              <parameter>input</parameter>            </methodparam>            <methodparam>              <type>fann_type *</type>              <parameter>output</parameter>            </methodparam>          </methodsynopsis>          <para>	    <function>fann_train</function> will train one iteration with a set of inputs, and a set of desired	    outputs. The training will be done by the standard backpropagation algorithm.	  </para>          <para>This function appears in FANN &gt;= 1.0.0.</para>        </refsect1>      </refentry>      <refentry id="api.fann_test">        <refnamediv>          <refname>fann_test</refname>          <refpurpose>Tests an ANN.</refpurpose>        </refnamediv>        <refsect1>          <title>Description</title>          <methodsynopsis>            <type>fann_type *</type>            <methodname>fann_test</methodname>            <methodparam>              <type>struct fann *</type>              <parameter>ann</parameter>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -