⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 svm_test.py

📁 一个计算线性支持向量机的matlab源代码
💻 PY
字号:
#!/usr/bin/env pythonfrom svm import *# a three-class problemlabels = [0, 1, 1, 2]samples = [[0, 0], [0, 1], [1, 0], [1, 1]]problem = svm_problem(labels, samples);size = len(samples)kernels = [LINEAR, POLY, RBF]kname = ['linear','polynomial','rbf']param = svm_parameter(C = 10,nr_weight = 2,weight_label = [1,0],weight = [10,1])for k in kernels:	param.kernel_type = k;	model = svm_model(problem,param)	errors = 0	for i in range(size):		prediction = model.predict(samples[i])		probability = model.predict_probability		if (labels[i] != prediction):			errors = errors + 1	print "##########################################"	print " kernel %s: error rate = %d / %d" % (kname[param.kernel_type], errors, size)	print "##########################################"param = svm_parameter(kernel_type = RBF, C=10)model = svm_model(problem, param)print "##########################################"print " Decision values of predicting %s" % (samples[0])print "##########################################"print "Numer of Classes:", model.get_nr_class()d = model.predict_values(samples[0])for i in model.get_labels():	for j in model.get_labels():		if j>i:			print "{%d, %d} = %9.5f" % (i, j, d[i,j])param = svm_parameter(kernel_type = RBF, C=10, probability = 1)model = svm_model(problem, param)pred_label, pred_probability = model.predict_probability(samples[1])print "##########################################"print " Probability estimate of predicting %s" % (samples[1])print "##########################################"print "predicted class: %d" % (pred_label)for i in model.get_labels():	print "prob(label=%d) = %f" % (i, pred_probability[i])

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -