📄 svm-predict.c
字号:
#include <stdio.h>#include <ctype.h>#include <stdlib.h>#include <string.h>#include "svm.h"char* line;int max_line_len = 1024;struct svm_node *x;int max_nr_attr = 64;struct svm_model* model;int predict_probability=0;void predict(FILE *input, FILE *output){ int correct = 0; int total = 0; double error = 0; double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; int svm_type=svm_get_svm_type(model); int nr_class=svm_get_nr_class(model); int *labels=(int *) malloc(nr_class*sizeof(int)); double *prob_estimates=NULL; int j; if(predict_probability) { if (svm_type==NU_SVR || svm_type==EPSILON_SVR) printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); else { svm_get_labels(model,labels); prob_estimates = (double *) malloc(nr_class*sizeof(double)); fprintf(output,"labels"); for(j=0;j<nr_class;j++) fprintf(output," %d",labels[j]); fprintf(output,"\n"); } } while(1) { int i = 0; int c; double target,v; if (fscanf(input,"%lf",&target)==EOF) break; while(1) { if(i>=max_nr_attr-1) // need one more for index = -1 { max_nr_attr *= 2; x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); } do { c = getc(input); if(c=='\n' || c==EOF) goto out2; } while(isspace(c)); ungetc(c,input); fscanf(input,"%d:%lf",&x[i].index,&x[i].value); ++i; } out2: x[i++].index = -1; if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) { v = svm_predict_probability(model,x,prob_estimates); fprintf(output,"%g ",v); for(j=0;j<nr_class;j++) fprintf(output,"%g ",prob_estimates[j]); fprintf(output,"\n"); } else { v = svm_predict(model,x); fprintf(output,"%g\n",v); } if(v == target) ++correct; error += (v-target)*(v-target); sumv += v; sumy += target; sumvv += v*v; sumyy += target*target; sumvy += v*target; ++total; } printf("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); printf("Mean squared error = %g (regression)\n",error/total); printf("Squared correlation coefficient = %g (regression)\n", ((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/ ((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy)) ); if(predict_probability) { free(prob_estimates); free(labels); }}void exit_with_help(){ printf( "Usage: svm-predict [options] test_file model_file output_file\n" "options:\n" "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" ); exit(1);}int main(int argc, char **argv){ FILE *input, *output; int i; // parse options for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; ++i; switch(argv[i-1][1]) { case 'b': predict_probability = atoi(argv[i]); break; default: fprintf(stderr,"unknown option\n"); exit_with_help(); } } if(i>=argc) exit_with_help(); input = fopen(argv[i],"r"); if(input == NULL) { fprintf(stderr,"can't open input file %s\n",argv[i]); exit(1); } output = fopen(argv[i+2],"w"); if(output == NULL) { fprintf(stderr,"can't open output file %s\n",argv[i+2]); exit(1); } if((model=svm_load_model(argv[i+1]))==0) { fprintf(stderr,"can't open model file %s\n",argv[i+1]); exit(1); } line = (char *) malloc(max_line_len*sizeof(char)); x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); if(predict_probability) if(svm_check_probability_model(model)==0) { fprintf(stderr,"model does not support probabiliy estimates\n"); predict_probability=0; } predict(input,output); svm_destroy_model(model); free(line); free(x); fclose(input); fclose(output); return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -