⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 moveout.tex

📁 国外免费地震资料处理软件包
💻 TEX
字号:
\section{Moveout analysis}% ------------------------------------------------------------\inputdir{flat}% ------------------------------------------------------------\plot{hyper}{width=6.0in}{An image is formed when the Kirchoff stackingcurve (dashed line) touches the true reflection response. Left: the case of under-migration; right: over-migration.}% ------------------------------------------------------------\plot{off}{width=5.0in}{Common-image gathers forspace-shift imaging (left column) andtime-shift imaging (right column).}% ------------------------------------------------------------\plot{ssk}{width=5.0in}{Common-image gathers after slant-stackfor space-shift imaging (left column) andfor time-shift imaging (right column).The vertical line indicates the migration velocity.}% ------------------------------------------------------------We can use the Kirchhoff formulation to analyze the moveout behavior of the time-shift imaging condition in the simplest case of a flat reflector in a constant-velocity medium (Figures~\ref{fig:hyper}-\ref{fig:ssk}). The synthetic data are imaged using shot-record wavefield extrapolation migration.Figure~\ref{fig:off} shows offsetcommon-image gathers for three different migrationslownesses $s$, one of which is equal to the modeling slowness $s_0$.The left column corresponds to the space-shift imaging conditionand the right column corresponds to the time-shift imaging condition.For the space-shift CIGs imaged with correct slowness,left column in Figure~\ref{fig:off},the energy is focused at zero offset,but it spreads in a region of offsets when the slowness is wrong.Slant-stacking produces the images in left column of Figure~\ref{fig:ssk}.For the time-shift CIGs imaged with correct slowness,right column in Figure~\ref{fig:off},the energy is distributed along a line with a slope equal to the local velocity at the reflector position,but it spreads around this region when the slowness is wrong.Slant-stacking produces the images in the right column of Figure~\ref{fig:ssk}.Let $s_0$ and $z_0$ representthe true slowness and reflector depth, and $s$ and $z$ stand for thecorresponding quantities used in migration.  An image is formed whenthe Kirchoff stacking curve $t(\hat{h}) = 2\,s\,\sqrt{z^2+\hat{h}^2} +2\,\tau$ touches the true reflection response $t_0(\hat{h}) =2\,s_0\,\sqrt{z_0^2+\hat{h}^2}$ (Figure~\ref{fig:hyper}). Solving for $\hat{h}$ from the envelope condition $t'(\hat{h})=t_0'(\hat{h})$ yields two solutions:\beq \label{eqn:h1}\hat{h} = 0\eeqand\beq \label{eqn:h2}\hat{h} = \sqrt{\frac{s_0^2 z^2 - s^2 z_0^2}{s^2-s_0^2}} \;.\eeqSubstituting solutions \ref{eqn:h1} and \ref{eqn:h2}in the condition $t(\hat{h})=t_0(\hat{h})$ producestwo images in the $\{z,\tau\}$ space.The first image is a straight line\beq \label{eqn:line}z(\tau) = \frac{z_0\,s_0 - \tau}{s}\;,\eeqand the second image is a segment of the second-order curve\beq \label{eqn:tcurve}z(\tau) = \sqrt{z_0^2 + \frac{\tau^2}{s^2-s_0^2}}\;.\eeqApplying a slant-stack transformation with $z = z_1 - \nu\,\tau$ turnsline~(\ref{eqn:line}) into a point$\{z_0\,s_0/s,1/s\}$ in the $\{z_1,\nu\}$space, while curve~(\ref{eqn:tcurve}) turns into the curve\beq \label{eqn:tcurve2}  z_1(\nu) = z_0\,\sqrt{1 + \nu^2\,\left(s_0^2-s^2\right)}\;.\eeqThe curvature of the $z_1(\nu)$ curve at $\nu=0$ is a clear indicatorof the migration velocity errors. By contrast, the moveout shape $z(h)$ appearing in wave-equationmigration with the lateral-shift imaging condition is \cite[]{Bartana}\beq \label{eqn:hcurve}  z(h) = s_0\,\sqrt{\frac{z_0^2}{s^2} + \frac{h^2}{s^2-s_0^2}}\;.\eeqAfter the slant transformation $z = z_1 + h\,\tan{\theta}$, themoveout curve~(\ref{eqn:hcurve}) turns into the curve\beq \label{eqn:hcurve2}  z_1(\theta) = \frac{z_0}{s}\,\sqrt{s_0^2 + \tan^2{\theta}\,\left(s_0^2-s^2\right)}\;,\eeqwhich is applicable for velocity analysis. A formal connection between$\nu$-parameterization in equation~(\ref{eqn:tcurve2}) and$\theta$-parameterization in equation~(\ref{eqn:hcurve2}) is given by\beq \label{eqn:nu2theta}  \tan^2{\theta} = s^2\,\nu^2 - 1\;,\eeqor\beq \label{eqn:angTflat}\cos \t = \frac{1}{\nu s} = \frac{\tt_z}{s} \;,\eeqwhere $\tt_z = \frac{\partial \tt}{\partial z}$.\rEq{angTflat} is a special case of \req{angT} for flat reflectors.Curves of shape~\ren{tcurve2} and \ren{hcurve2} areplotted on top of the experimental moveouts in Figure~\ref{fig:ssk}.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -