⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 angle.tex

📁 国外免费地震资料处理软件包
💻 TEX
字号:
\section{Angle transformation in wave-equation imaging}Using the definitions introduced in the preceding section,we can make the standard notations for source and receiver coordinates:$\ss = \mm - \hh$ and $\rr = \mm + \hh$.The traveltime from a source to a receiver is a functionof all spatial coordinates of the seismic experiment$ t = t \lp \mm,\hh \rp$.Differentiating $t$ with respect to allcomponents of the vectors $\mm$ and $\hh$,and using the standard notations$ {\bf p}_\alpha = \nabla_\alpha t$, where $\alpha=\{\mm,\hh,\ss,\rr\}$, we can write:\beqa \label{eqn:PmPh}\pmv &=& \prv + \psv \;, \\   \label{eqn:PmPhb}\phv &=& \prv - \psv \;.\eeqaFrom equations~\ren{PmPh}-\ren{PmPhb}, we can write\beqa2 \psv &=& \pmv - \phv \;, \\2 \prv &=& \pmv + \phv \;.\eeqa% ------------------------------------------------------------\inputdir{XFig}\plot*{vec3}{width=3.0in}{Geometric relations between ray vectors at a reflection point.}% ------------------------------------------------------------By analyzing the geometric relations of variousvectors at an image point (Figure~\ref{fig:vec3}), we can write the following trigonometric expressions:\beqa \label{eqn:cosph}\mph^2 &=& \mps^2 + \mpr^2 - 2 \mps \mpr \cos(2 \t) \;,\\   \label{eqn:cospm}\mpm^2 &=& \mps^2 + \mpr^2 + 2 \mps \mpr \cos(2 \t) \;.\eeqaEquations~\ren{cosph}-\ren{cospm} relate wavefield quantities,$\phv$ and $\pmv$, to a geometric quantity, reflection angle $\t$.Analysis of these expressions provide sufficient information forcomplete decompositions of migrated images in components fordifferent reflection angles.\subsection{Space-shift imaging condition}Defining $\kmv$ and $\khv$ as location andoffset wavenumber vectors, and assuming $\mps=\mpr=s$,where $s\lp \mm \rp$ is the slowness at image locations,we can replace $\mpm = \mkm/\w$ and$\mph = \mkh/\w$ in equations~\ren{cosph}-\ren{cospm}:\beqa \label{eqn:coskh}\mkh^2 &=& 2(\w\,s)^2 (1 - \cos 2\t ) \;,\\   \label{eqn:coskm}\mkm^2 &=& 2(\w\,s)^2 (1 + \cos 2\t ) \;.\eeqaUsing the trigonometric identity\beq\cos(2\t) = \frac{1-\tan^2 \t}                 {1+\tan^2 \t} \;,\eeqwe can eliminate from equations~\ren{coskh}-\ren{coskm}the dependence on frequency and slowness, and obtain an angle decomposition formulation after imagingby expressing $\tan \t$ as a function of position andoffset wavenumbers $(\kmv,\khv)$:\beq \label{eqn:angX}\tan \t = \frac{\mkh}{\mkm} \;.\eeqWe can constructangle-domain common-image gathersby transforming prestack migrated imagesusing \req{angX}\beq \label{eqn:XSTKa}\RR \lp \mm, \hh \rp  \Longrightarrow \RR \lp \mm, \t  \rp \;.\eeqIn 2D, this transformation is equivalent with a slant-stackon migrated offset gathers. For 3D, this transformationis described in more detail by \cite{Fomel.seg.3dadcig} or\cite{SavaFomel.pag}.\subsection{Time-shift imaging condition}Using the same definitions as the ones introduced in the preceding subsection, we can re-write \req{coskm}as\beq\mpm^2 = 4 s^2 \cos^2 \t \;,\eeqfrom which we can derive an expression for angle-transformationafter time-shift prestack imaging:\beq \label{eqn:angT}\cos \t = \frac{\mpm}{2s} \;.\eeqRelation~\ren{angT} can be interpreted using ray parameter vectorsat image locations (Figure~\ref{fig:img3}).% ------------------------------------------------------------\inputdir{XFig}\plot{img3}{width=3.0in}{Interpretation of angle-decomposition based on \req{angT}for time-shift gathers.}% ------------------------------------------------------------Angle-domain common-image gathers can be obtained by transforming prestack migrated images using \req{angT}:\beq \label{eqn:TSTKa}\RR \lp \mm, \tt \rp \Longrightarrow \RR \lp \mm, \t  \rp \;.\eeq\rEq{angT} can be written as\beq  \label{eqn:angTcart}\cos^2 \t = \frac{|\nabla_{\mm} 2 \tt |^2}{4 s^2\lp \mm \rp}= \frac{\tt_x^2 + \tt_y^2 + \tt_z^2}{s^2 \lp x,y,z\rp} \;,\eeqwhere $\tt_x,\tt_y,\tt_z$ are partial derivatives of $\tt$relative to $x,y,z$.We can rewrite \req{angTcart} as\beq \label{eqn:angTalg}\cos^2 \t = \frac{\tt_z^2}{s^2 \lp x,y,z \rp} \lp 1+z_x^2+z_y^2 \rp \;,\eeqwhere $z_x,z_y$ denote partial derivative of coordinate $z$relative to coordinates $x$ and $y$, respectively.\rEq{angTalg} describes an algorithm in two stepsfor angle-decomposition after time-shift imaging:compute $\cos \t$ through a slant-stack in $z-\tt$ panels(find a change in $\tt$ with respect to $z$),then apply a correction using the migration slowness $s$ anda function of the structural dips $\sqrt{1+z_x^2+z_y^2}$.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -