📄 paper.tex
字号:
\title{Regularizing seismic inverseproblems by model re-parameterization using plane-wave construction}\renewcommand{\thefootnote}{\fnsymbol{footnote}}\lefthead{Fomel \& Guitton}\righthead{Plane-wave construction}\author{Sergey Fomel\footnotemark[1] and Antoine Guitton\footnotemark[2]}\address{\footnotemark[1]Bureau of Economic Geology, \\John A. and Katherine G. Jackson School of Geosciences \\The University of Texas at Austin \\University Station, Box X \\Austin, TX 78713-8972 \\\footnotemark[2]3DGeo Development Inc. \\4633 Old Ironsides Drive, Suite 401 \\Santa Clara, CA 95054}\maketitle\begin{abstract} We define plane-wave construction (PWC), an operator for generating data aligned along predefined locally variable slopes, as the inverse of plane-wave destruction, an operator used for measuring the slopes. PWC can be applied for efficient \old{preconditioning} \new{regularization} of \old{geophysical} \new{seismic} estimation problems. Using simple examples, we demonstrate the applicability of PWC for enhancing the coherency of seismic images, improving velocity estimation methods, and separating primaries and multiples with a pattern-based approach.\end{abstract}\section{Introduction}\cite{GEO67-06-19461960} describes applications of plane-wavedestruction filters, a concept originally introduced by \cite{pvi}.High-order accurate destruction filters are used for estimating localslopes of seismic events and can be applied for such problems as faultdetection, data regularization, and noise attenuation. Estimatinglocal slopes can also replace traditional velocity analysis and enablevelocity-independent time-domain seismic imaging \cite[]{pmig}.In this paper, we introduce \emph{plane-wave construction} (PWC), aformal inverse of the plane-wave destruction operator. We show thatPWC can be used as an efficient \old{preconditioner} \new{regularizer}for speeding up iterative optimization that involves models with localplane-wave structure. In that sense, one can view PWC as ahigher-order generalization of \emph{steering filters}\cite[]{SEG-1998-1851,clapp}. We illustrate its applications withfield data examples.The immediate effect of PWC is smoothing the data along dominant eventslopes. In application to coherency enhancement in seismic images,iterative least-squares inversion with PWC \old{preconditioning}\new{parameterization} extracts portions of the image aligned with thedominant slopes. Using PWC in combination with iterative reweightingallows us to preserve fault geometry in the coherency enhancingprocess. When applied to the classic velocity estimation problem, PWCenforces consistency between the velocity structure and reflectorgeometry. In the multiple elimination problem, PWC\old{preconditioning} \new{parameterization} enables separatingprimary and multiple events on the basis of differences in their localslopes.\new{PWC requires seismic traces to be sequentiallyordered. Therefore, it may not be immediately applicable to 3-Dproblems. Transformation from plane-wave construction to plane-waveshaping \cite[]{shape} addresses this problem \cite[]{us}.}\begin{comment}A more powerful approach to regularization involves shaping operatorsthat project the estimated model into the space of acceptable models\cite[]{shape}. In the last section of this paper, we show how totransform plane-wave construction into plane-wave shaping by followingan analogy with triangle filtering.\end{comment}\section{Plane-wave construction defined}Let us represent a seismic section $\mathbf{s}$ as a collection oftraces: $\mathbf{s} = \left[\mathbf{s}_1 \; \mathbf{s}_2 \; \ldots \;\mathbf{s}_N\right]^T$. A plane-wave destruction operator\cite[]{GEO67-06-19461960} effectively predicts each trace from itsneighbor and subtracts the prediction from the original trace. In thelinear operator notation, we can write the plane-wave destructionoperation as\begin{equation} \label{eq:pwd} \mathbf{r} = \mathbf{D\,s}\;,\end{equation}where $\mathbf{r}$ is the destruction residual, and $\mathbf{D}$ is thedestruction operator defined as\begin{equation} \label{eq:d} \mathbf{D} = \mathbf{I}_N - \mathbf{P} = \left[\begin{array}{ccccc} \mathbf{I} & 0 & 0 & \cdots & 0 \\ - \mathbf{P}_{1,2} & \mathbf{I} & 0 & \cdots & 0 \\ 0 & - \mathbf{P}_{2,3} & \mathbf{I} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & - \mathbf{P}_{N-1,N} & \mathbf{I} \\ \end{array}\right]\;,\end{equation}where $\mathbf{I}$ stands for the identity operator, $\mathbf{P}$ isthe prediction operator defined by \cite{GEO67-06-19461960}, and$\mathbf{P}_{i,j}$ describes prediction of trace $j$ from trace$i$. \new{Prediction of a trace consists of shifting the originaltrace along the dominant event slope. The dominant slope is estimatedby minimizing the prediction error (the output of $\mathbf{D}$) byregularized least-squares optimization. Regularization constraints theestimated slopes to vary smoothly inside the data space.}The plane-wave construction (PWC) operator $\mathbf{C}$ is simply the inverse of$\mathbf{D}$:\begin{eqnarray} \nonumber \mathbf{C} & = & \left[\begin{array}{ccccc} \mathbf{I} & 0 & 0 & \cdots & 0 \\ - \mathbf{P}_{1,2} & \mathbf{I} & 0 & \cdots & 0 \\ 0 & - \mathbf{P}_{2,3} & \mathbf{I} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & - \mathbf{P}_{N-1,N} & \mathbf{I} \\ \end{array}\right]^{-1} \\ \nonumber & = & \left[\begin{array}{ccccc} \mathbf{I} & 0 & 0 & \cdots & 0 \\ \mathbf{P}_{1,2} & \mathbf{I} & 0 & \cdots & 0 \\ \mathbf{P}_{1,2}\,\mathbf{P}_{2,3} & \mathbf{P}_{2,3} & \mathbf{I} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{P}_{1,2} \cdots \mathbf{P}_{N-1,N} & \mathbf{P}_{2,3} \cdots \mathbf{P}_{N-1,N} & \cdots & \mathbf{P}_{N-1,N} & \mathbf{I} \\ \end{array}\right] \\ & = & \left[\begin{array}{ccccc} \mathbf{I} & 0 & 0 & \cdots & 0 \\ \mathbf{P}_{1,2} & \mathbf{I} & 0 & \cdots & 0 \\ \mathbf{P}_{1,3} & \mathbf{P}_{2,3} & \mathbf{I} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \mathbf{P}_{1,N} & \mathbf{P}_{2,N} & \cdots & \mathbf{P}_{N-1,N} & \mathbf{I} \\ \end{array}\right] \;, \label{eq:c}\end{eqnarray}For efficiency, it is convenient to apply PWC as a recursive triangular inversion. The outputof\begin{equation} \label{eq:pwc} \mathbf{c} = \mathbf{C\,s} = \left[\mathbf{c}_1 \; \mathbf{c}_2 \; \ldots \; \mathbf{s}_N\right]^T\end{equation}is computed recursively as follows:\begin{equation} \label{eq:rec} \mathbf{c}_1 = \mathbf{s}_1\;,\quad \mathbf{c}_k = \mathbf{s}_k + \mathbf{P}_{k-1,k}\,\mathbf{c}_{k-1}\;\quad k=2,3,\ldots,N\end{equation}$\mathbf{C}$ is a smoothing operator along localplane-waves. \new{Re-parameterization by $\mathbf{C}$ provideseffective regularization and} can help \old{accelerating}\new{accelerate the} convergence of iterative optimization in inverseproblems \cite[]{harlan,GEO68-02-05770588}. When applied for model\old{preconditioning} \new{re-parameterization} in least-squaresinversion of the forward modeling operator\begin{equation} \label{eq:for} \mathbf{d} = \mathbf{L\,m} = \mathbf{L\,C\,p}\;,\end{equation}plane-wave construction leads to the formal inversion\begin{equation} \label{eq:inv} \widehat{\mathbf{m}} = \mathbf{C}\,\widehat{\mathbf{p}} =\mathbf{C\,C}^T\,\left(\mathbf{L\,C\,C}^T\,\mathbf{L}^T + \epsilon^2\,\mathbf{I}_N\right)^{-1}\,\mathbf{d}\;.\end{equation}Here $\mathbf{m}$ is the model, $\mathbf{p}$ is the \old{preconditioned} \new{re-parameterized}model, $\mathbf{d}$ is the observed data, $\epsilon$ is theregularization parameter, and $\widehat{\mathbf{m}}$ is theregularized model estimate. The $\mathbf{C}\,\mathbf{C}^T$ operatorplays the role of the model covariance operator. % \cite[]{tarantola}.In large-scaleproblems, the inversion in equation~(\ref{eq:inv}) is computed efficiently byan iterative conjugate-gradient algorithm. A different approach to recursivefilter preconditioning, based on the helix transformation\cite[]{GEO63-05-15321541}, was suggested by \cite{GEO68-02-05770588}.The total cost of plane-wave construction is simply proportional to the datasize and to the cost of an elementary prediction $\mathbf{P}_{k-1,k}$, whichoperates at the speed of tridiagonal inversion for a matrix of thetrace-length size \cite[]{GEO67-06-19461960}. This operation is comfortablyefficient in practical applications.\section{Applications}\inputdir{beic}In this section, we describe three practical applications ofplane-wave construction in solving inverse problems with model \old{preconditioning} \new{re-parameterization}.\subsection{Coherency enhancement}\plot{bei-slp}{width=0.9\columnwidth}{Left: seismic image after prestack time migration. Right: local dips estimated with plane-wave destruction.}\plot{bei-vg}{width=0.9\columnwidth}{Left: seismic image after coherency enhancing. Right: difference between the coherency-enhanced image and the
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -