📄 paper.tex
字号:
\author{Gustav Kirchhoff}%%%%%%%%%%%%%%%%%%%%%%\title{Homework 5}\begin{abstract}In this lab, you will derive analytical expressions for geometricalspreading in layered media and experiment with creating angle gathersby wave equation migration.\end{abstract}\definecolor{frame}{rgb}{0.905,0.905,1.0}\lstset{language=Python,backgroundcolor=\color{frame},showstringspaces=false}\section{Theoretical part}In a layered isotropic medium with a $V(z)$ velocity distribution, thetraveltime and the offset of the reflected wave are given by\begin{eqnarray} \label{eq:t} t(p) & = & 2\,\int\limits_{0}^{H} \frac{d z}{V(z)\,\sqrt{1-p^2\,V^2(z)}} \\ \label{eq:x} x(p) & = & 2\,\int\limits_{0}^{H} \frac{p\,V(z)\,d z}{\sqrt{1-p^2\,V^2(z)}}\;,\end{eqnarray}where $H$ is the reflector depth, and $p$ is the horizontal componentof the slowness vector in the reflection plane $p = \partialt/\partial x$. \begin{enumerate}\item Prove that the geometrical amplitude of the reflection wave in the 3-D case is\begin{equation} A(p) = \frac{R(p)\,V(0)\,\sqrt{V(0)\,\rho(0)}}{2\,\sqrt{1-p^2\,V^2(z)}}\,% \left[\int\limits_{0}^{H} \frac{V(z)\,d z}{\sqrt{1-p^2\,V^2(z)}}\, \int\limits_{0}^{H} \frac{V(z)\,d z}{\left(1-p^2\,V^2(z)\right)^{3/2}} \right]^{-1/2}\;,\label{eq:a3}\end{equation}where $R(p)$ is the reflection coefficient.\textbf{Hint:} Rewrite equation~(\ref{eq:x}) as\begin{equation} \label{eq:x3} \mathbf{x}(\mathbf{p}) = 2\,\int\limits_{0}^{H} \frac{\mathbf{p}\,V(z)\,d z}{\sqrt{1-\mathbf{p} \cdot \mathbf{p}\,V^2(z)}}\;,\end{equation}where vectors $\mathbf{x}$ and $\mathbf{p}$ have two horizontalcomponents, and evaluate the result at $\mathbf{p}=\{p,0\}$. \item Derive the corresponding expression for the amplitude in the 2-D case.\begin{equation} \label{eq:a2} A(p) =\end{equation}\end{enumerate}\section{Computational part}\inputdir{hyper}Figure~\ref{fig:hyper,image} shows the model of a reflector and animage generated by wave-equation imaging of three shot gathersdepicted in Figure~\ref{fig:shots}. The shot gathers are generated byKirchhoff modeling.\multiplot{2}{hyper,image}{width=0.45\textwidth}{Reflector model (a) and a wave-equation image (b) using three synthetic shot gathers.}\plot{shots}{width=0.9\textwidth}{Synthetic shot gathers generated by Kirchhoff integral modeling. Analytical reflection traveltime curves are overlaid on top of the reflections.}\begin{enumerate}\item Start by running\begin{verbatim}> cd ~/geo391> svn update\end{verbatim} \item Change directory \begin{verbatim}> cd ~/geo391/hw5/hyper\end{verbatim}\item Run\begin{verbatim}> scons view\end{verbatim}to generate figures and display them on your screen. \itemFigure~\ref{fig:cigs} shows three angle-domain common image gathersfor three image locations extracted from wave-equation migration.Explain the appearance of angle gathers. Why does each shot gathergenerates only one point on an angle gather? You can use a sketch ofincident and reflection rays in the explanation.\plot{cigs}{width=0.9\textwidth}{Angle-domain common image gathers for three image locations extracted from wave-equation migration.}\item Edit the \texttt{SConstruct} file to change the plane reflector to a hyperbolic reflector (uncomment the line with \texttt{b} parameter). Repeat the computations.\begin{enumerate}\item You will need to change the analytical traveltime formula in \texttt{SConstruct} to match the new reflection traveltimes in Figure~\ref{fig:shots}. \textbf{Hint:} Use equations from Homework 3.\item Explain the change in the appearance of angle gathers. You can use a sketch of incident and reflection rays in the explanation. \item Modify the \texttt{SConstruct} file to move the shot positions at the surface so that the image point at $-0.5$~km is illuminated at a reflection angle $\theta$ such that $\tan{\theta}=0.5$.\end{enumerate}\item After you are done, run\begin{verbatim}> scons lock > scons -c\end{verbatim}\item Edit the file \verb#~/geo391/hw5/paper.tex# in your favorite editor and change thefirst line to have your name instead of Kirchhoff's. Run\begin{verbatim}> scons pdf\end{verbatim}and submit your result (file \texttt{paper.pdf}) on paper or bye-mail.\end{enumerate}{\tiny\lstinputlisting[frame=single]{hyper/SConstruct}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -