📄 paper.tex
字号:
\author{Leonard Euler} %%%%%%%%%%%%%%%%%%%%%%\title{Homework 2}\begin{abstract}This homework has two parts. In the theoretical part, you will deriveanalytical solutions for one-point and two-point ray tracing problemsin a medium with a constant gradient of velocity. In the computationalpart, you will experiment with a real marine dataset from offshoreFlorida.\end{abstract}\section{Introduction}Start by running\begin{verbatim}> cd ~/geo391> svn update\end{verbatim}\section{Theoretical part}You can either write your answers on paper or edit them in\verb#~/geo391/hw2/paper.tex#. Please show all the mathematicalderivations that you do.\begin{enumerate}\item In class, we used a mysterious parameter $\sigma$ to represent a variable continuously increasing along a ray. There are other variables that can play a similar role.\begin{enumerate}\item Use the chain rule $\frac{d}{d \sigma} = \frac{d}{d T}\,\frac{dT}{d \sigma}$ to transform the isotropic ray tracing system\begin{eqnarray}\label{eq:xsigma}\frac{d \mathbf{x}}{d \sigma} & = & \mathbf{p} \\\label{eq:psigma}\frac{d \mathbf{p}}{d \sigma} & = & S(\mathbf{x})\,\nabla S \\\label{eq:tsigma}\frac{d T}{d \sigma} & = & S^2(\mathbf{x})\end{eqnarray}into the equivalent system\begin{eqnarray}\label{eq:xt}\frac{d \mathbf{x}}{d T} = & & \hfill \\\label{eq:pt}\frac{d \mathbf{p}}{d T} = & & \hfill\end{eqnarray}that uses time $T$ as the ray parameter. Check physical dimensions.\item Use the chain rule to find a parameter $\xi$ such that\begin{equation}\label{eq:pxi}\frac{d \mathbf{p}}{d \xi} = - \nabla V = \frac{\nabla S}{S^2(\mathbf{x})}\end{equation}What are the physical dimensions of $\xi$?\item Show that\begin{equation} \label{eq:txi} \frac{d T}{d \xi} = V(\mathbf{x})\;,\end{equation}where $V=1/S$ is the velocity.\item Find\begin{eqnarray} \label{eq:xxi} \frac{d \mathbf{x}}{d \xi} = & & \hfill \end{eqnarray}\end{enumerate}\item We will use a new $\xi$ parameterization to solve the raytracing problem analytically for the special case when the velocitydistribution has a constant gradient\begin{equation} \label{eq:v} V(\mathbf{x}) = V(\mathbf{x}_0) + \mathbf{g}_0 \cdot (\mathbf{x} - \mathbf{x}_0)\;.\end{equation}\begin{enumerate}\item Solving the one-point ray tracing problem for $\mathbf{x}(\xi)$and $\mathbf{p}(\xi)$ with the initial conditions $\mathbf{x}(0)=\mathbf{x}_0$ and $\mathbf{p}(0)=\mathbf{p}_0$, show that\begin{equation}\label{eq:psol}\mathbf{p}(\xi) = \mathbf{p}_0 - \mathbf{g}_0\,\xi\;.\end{equation}\item Express\begin{eqnarray}\label{eq:vsol}V(\mathbf{x}) = \frac{1}{S(\mathbf{x})} = \frac{1}{\sqrt{\mathbf{p} \cdot \mathbf{p}}} = & &\end{eqnarray}in terms of $\mathbf{g}_0$, $\mathbf{p}_0$ and $\xi$.\item Define $a = \mathbf{p} \cdot (\mathbf{x} - \mathbf{x}_0)$. Find\begin{eqnarray}\label{eq:axi}\frac{d a}{d \xi} = & & \end{eqnarray}and show that \begin{equation}\label{eq:asol}a(\xi) = V(\mathbf{x}_0)\,\xi\end{equation}and\begin{equation}\label{eq:a0sol}\mathbf{p}_0 \cdot (\mathbf{x} - \mathbf{x}_0) = V(\mathbf{x})\,\xi\end{equation}\item One way to seek the solution for the one-point ray tracing problem is to look for scalars $\alpha$ and $\beta$ in the representation\begin{equation} \label{eq:xsol} \mathbf{x}(\xi) = \mathbf{x}_0 + \alpha(\xi)\,\mathbf{p}_0 + \beta(\xi)\,\mathbf{g}_0\;.\end{equation}Under what condition does the linear system of equations\begin{eqnarray} \label{eq:linsys1} V(\mathbf{x})\,\xi = \mathbf{p}_0 \cdot (\mathbf{x} - \mathbf{x}_0) & = & \alpha\,\mathbf{p}_0 \cdot \mathbf{p}_0 + \beta\,\mathbf{p}_0 \cdot \mathbf{g}_0 \\ \label{eq:linsys2} V(\mathbf{x}) - V(\mathbf{x}_0) = \mathbf{g}_0 \cdot (\mathbf{x} - \mathbf{x}_0) & = & \alpha\,\mathbf{p}_0 \cdot \mathbf{g}_0 + \beta\,\mathbf{g}_0 \cdot \mathbf{g}_0\end{eqnarray}have a unique solution for $\alpha$ and $\beta$?\end{enumerate}\newpage\item (EXTRA CREDIT) For an extra credit, solve the two-point ray tracing problem. \begin{enumerate}\item Find $\alpha$ and $\beta$ from equations~(\ref{eq:linsys1}-\ref{eq:linsys2}).\item Express the squared distance between the ray end points \begin{eqnarray} \nonumber |\mathbf{x} - \mathbf{x}_0|^2 & = & (\mathbf{x} - \mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = \alpha^2\,\mathbf{p}_0 \cdot \mathbf{p}_0 + 2 \alpha\,\beta\,\mathbf{p}_0 \cdot \mathbf{g}_0 + \beta^2\,\mathbf{g}_0 \cdot \mathbf{g}_0 \\ & = & \label{eq:d2} \end{eqnarray} in terms of $\mathbf{g}_0$, $\mathbf{p}_0$, and $\xi$. \item In the two-point problem, the two unknown parameters are $\xi$ and $(\mathbf{p}_0 \cdot \mathbf{g}_0)$. Express $(\mathbf{p}_0 \cdot \mathbf{g}_0)$ from your equation~(\ref{eq:vsol}) and substitute it into your equation~(\ref{eq:d2}). Solve for $\xi$. How many physically meaningful solutions can you obtain?\item Finally, use $\xi$ and $(\mathbf{p}_0 \cdot \mathbf{g}_0)$ expressed in terms of $|\mathbf{x} - \mathbf{x}_0|$, $|\mathbf{g}_0|$, $V(\mathbf{x}_0)$, and $V(\mathbf{x})$ and substitute them into the one-point traveltime solution obtained by integrating equation~(\ref{eq:txi})\footnote{$\mbox{arccosh}(x)$ is the inverse hyperbolic cosine function defined as $\mbox{arccosh}(x) = \ln\left(x + \sqrt{x^2-1}\right)$.} \begin{equation} \label{eq:t1} T(\xi) = \frac{1}{|\mathbf{g}_0|}\,\mbox{arccosh}\left(1 + \frac{|\mathbf{g}_0|^2\,V(\mathbf{x})\,V^2(\mathbf{x}_0)\,\xi^2} {V(\mathbf{x})+V(\mathbf{x}_0) - (\mathbf{p}_0 \cdot \mathbf{g}_0)\,V(\mathbf{x})\,V^2(\mathbf{x}_0)\,\xi}\right)\;. \end{equation} Your result will be the analytical two-point traveltime \begin{eqnarray} \label{eq:t2} \widehat{T}(\mathbf{x}_0,\mathbf{x}) = & & \hfill \ \end{eqnarray}\end{enumerate}\end{enumerate}\section{Computational part}\inputdir{blake}In the computational part, we begin working with a real dataset. The dataset is a 2-D line from the Blake Outer Ridge areaoffshore Florida. It was collected by USGS in order to study theoccurrence of methane hydrates. The dataset and its analysis for gashydrate detection are described by\cite{GEO63-05-16591669,GEO65-02-05650573}.Figure~\ref{fig:cmp} shows an example CMP (common midpoint) gatherfrom the dataset. Note the change in the trace spacing caused by usinga non-linear cable in the acquisition. The presence of gas hydrates ismanifested by a so-called BSR (bottom-simulating reflector). You canget an idea of the spatial extent of BSR from the near-offset sectionin Figure~\ref{fig:noff}.\plot{cmp}{width=\textwidth}{CMP (common midpoint) gather from the Blake Outer Ridge dataset. The presence of gas hydrates is manifested by BSR (bottom-simulatingreflector).}\sideplot{noff}{width=\textwidth}{Near offset section of the Blake Outer Ridge data.}We will use a very simple model to try explaining the geometry of theobserved events in the data. The left plot in Figure~\ref{fig:ray}shows the model and rays from two-point ray tracing. The modelconsists of a constant velocity water layer and sedimentary layer thatcontains BSR with a slowly variable velocity. The right plot inFigure~\ref{fig:ray} shows the CMP gather and traveltime curvesobtained by ray tracing. \plot{ray}{width=\textwidth}{Left: A two-layer model and ray trajectories. Right: A CMP gather and traveltime curves.}Your task is to modify the model so that the predicted traveltimecurves match the geometry of the sea bottom and the BSR reflectionobserved in the data.\begin{enumerate}\item Change directory \begin{verbatim}> cd ~/geo391/hw2/blake\end{verbatim}\item Run\begin{verbatim}> scons view\end{verbatim}to generate figures and display them on your screen. \item Edit thetop of the \texttt{SConstruct} file to modify the modelparameters. Check your result by running\begin{verbatim}> scons ray.view\end{verbatim}or (equivalently)\begin{verbatim}> scons Fig/ray.vpl> xtpen Fig/ray.vpl\end{verbatim}\item After you are done, run\begin{verbatim}> scons lock> cd ..\end{verbatim}\item Edit the file\verb#~/geo391/hw2/paper.tex# in your favorite editor and change thefirst line to have your name instead of Euler's. Run\begin{verbatim}> scons pdf\end{verbatim}and submit your result (file \texttt{paper.pdf}) on paper or bye-mail.\end{enumerate}\bibliographystyle{seg} \bibliography{SEG}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -