📄 paper.tex
字号:
\begin{equation} \label{eq:qpdefhat} \hat{q} = \frac{l\,(a-l) + (l+f)^2} {c\,(a-l)}\;.\end{equation}\cite{Muir.sep.44.55} also suggested approximating the VTIgroup velocity with an analogous expression\begin{equation} \label{eq:muir2}\frac{1}{V^2_{P}(\Theta)} \approx E(\Theta) + \frac{(Q-1)\,A\,C\,\sin^2{\Theta}\,\cos^2{\Theta}}{E(\Theta)}\end{equation}where $A=1/a$, $C=1/c$, $Q = 1/q$, $\Theta$ is the group angle, and$E(\Theta)$ is the elliptical part:\begin{equation}\label{eq:muel2}E(\Theta) = A\,\sin^2{\Theta} + C\,\cos^2{\Theta}\;.\end{equation}Equations~\eqref{eq:muph} and~\eqref{eq:muir2} are consistent in the sensethat both of them are exact for elliptic anisotropy ($q=Q=1$) andaccurate to the first order in $(q-1)$ or $(Q-1)$ in the general case oftransversally isotropic media.To the same approximation order, the connection between the phase and groupdirections is\begin{equation}\label{eq:t2T}\tan{\Theta} = \tan{\theta}\,\frac{a}{c}\, \left(1 - (q-1)\,\frac {a\,\sin^2{\theta} - c\,\cos^2{\theta}} {a\,\sin^2{\theta} + c\,\cos^2{\theta}}\right)\;.\end{equation}%or%\begin{equation}% \label{eq:T2t}% \sin^2{\theta} = % \frac{A^2\,\sin^2{\Theta}}{\left(A^2\,\sin^2{\Theta} + % C^2\,\cos^2{\Theta}\right)}\,% \left[1 - \frac{2\,(Q-1)\,C^2\,\cos^2{\Theta}\,% \left(C\,\cos^2{\Theta} - A\,\sin^2{\Theta}\right)}% {\left(A\,\sin^2{\Theta} + C\,\cos^2{\Theta}\right)\,% \left(A^2\,\sin^2{\Theta} + C^2\,\cos^2{\Theta}\right)}\right]\;.%\end{equation}\section{Shifted hyperbola approximation for the phase velocity}Despite the beautiful symmetry of Muir's approximations~(\ref{eq:muph})and~(\ref{eq:muir2}), they are less accurate in practice than some otherapproximations, most notably the weak anisotropy approximation of\cite{GEO51-10-19541966}, which can be written as \cite[]{GEO61-02-04670483}\begin{equation} \label{eq:thoms} v_P^2(\theta) \approx c\,\left(1 + 2\,\epsilon\,\sin^4{\theta} + 2\,\delta\,\sin^2{\theta}\,\cos^2{\theta}\right)\;,\end{equation}where \begin{equation} \label{eq:epsdelta} \epsilon = \frac{a-c}{2\,c}\quad\mbox{and}\quad \delta = \frac{(l + f)^2 - (c - l)^2}{2\,c\,(c - l)}\;.\end{equation}Note that both approximations involve the anellipticity factor ($q-1$ or$\epsilon-\delta$) in a linear fashion. If the anellipticity effect issignificant, the accuracy \new{of Muir's equations can be improved byreplacing the linear approximation with a nonlinear one}. There are, ofcourse, infinitely many nonlinear expressions that share the samelinearization. In this study, I focus on the shifted hyperbola approximation,which follows from the fact that an expression of the form \begin{equation} \label{eq:lin} x + \frac{\alpha}{x} \end{equation}is the linearization (Taylor series expansion) of the form\begin{equation} \label{eq:nonlin} x\,(1-s) + s\,\sqrt{x^2 + \frac{2\,\alpha}{s}}\end{equation}for small $\alpha$. Linearization does not depend on the parameter $s$, whichaffects only higher-order terms in the Taylor expansion.Expression~(\ref{eq:nonlin}) is reminiscent of the shifted hyperbolaapproximation for normal moveout in vertically heterogeneous media\cite[]{malov,Sword.sep.51.313,GEO53-02-01430157,GEO59-06-09830999} and theStolt stretch correction in the frequency-wavenumber migration\cite[]{GEO43-01-00230048,mystolt}. It is evident that Muir'sapproximation~(\ref{eq:muph}) has exactly the right form~(\ref{eq:lin}) to beconverted to the shifted hyperbola approximation~(\ref{eq:nonlin}). Thus, we seek an approximation of the form\begin{equation} \label{eq:shiftm} v_P^2(\theta) \approx e(\theta)\,(1-s) + s\,\sqrt{e^2(\theta) + \frac{2\,(q-1)\,a\,c\, \sin^2{\theta}\,\cos^2{\theta}}{s}}\end{equation}with $e(\theta)$ defined by equation~(\ref{eq:muel}). The plan is to select avalue of the additional parameter $s$ to fit the exact phase velocityexpression~(\ref{eq:qp}) and then to constrain $s$ so that it depends only onthe three parameters already present in the originalapproximation~\eqref{eq:muph}.One can verify that the velocity curvature $d^2 v_P/d \theta^2$ around thevertical axis $\theta=0$ for approximation~(\ref{eq:shiftm}) depends on thechosen value of $q$ but does not depend on the value of the shift parameter$s$. This means that the velocity profile $v_P(\theta)$ becomes sensitive to$s$ only further away from the vertical direction. This separation ofinfluence between the approximation parameters is an important and attractiveproperty of the shifted hyperbola approximation. I find an appropriate valuefor $s$ by fitting additionally the fourth-order derivative $d^4 v_P/d\theta^4$ at $\theta=0$ to the corresponding derivative of the exactexpression. The fit is achieved when $s$ has the value\begin{equation} \label{eq:sval} s = \frac{c-l}{2}\,\frac{(a-l)\,(c-l) - (l+f)^2} {a\,(c-l)^2 - c\,(l+f)^2}\;. \end{equation}It is more instructive to express it in the form\begin{equation} \label{eq:sval2} s = \frac{1}{2}\,\frac{(a-c)\,(q-1)\,(\hat{q}-1)} {a\,\left(1 - \hat{q} - q\,(1-q)\right) - c\,\left((\hat{q}-1)^2+\hat{q}\,(q-\hat{q})\right)}\;, \end{equation}where $q$ and $\hat{q}$ are defined by equations~\eqref{eq:qpdef}and~\eqref{eq:qpdefhat}. In this form of the expression, $\hat{q}$ appears asthe extra parameter that we need to eliminate. This parameter was defined byfitting the velocity profile curvature around the horizontal axis, which wouldcorrespond to infinitely large offsets in a surface seismic experiment. Onepossible way to constrain it is to set $\hat{q}$ equal to $q$, which impliesthat the velocity profile has similar behavior near the vertical and thehorizontal axes. Setting $\hat{q} \approx q$ in equation~\eqref{eq:sval2}yields\begin{equation} \label{eq:sappr} s \approx \lim_{\hat{q} \rightarrow q} s = \frac{1}{2}\;.\end{equation}Substituting \eqref{eq:sappr} in equation~\eqref{eq:shiftm} produces the finalapproximation\begin{equation} \label{eq:shiftm2} v_P^2(\theta) \approx \frac{1}{2}\,e(\theta) + \frac{1}{2}\,\sqrt{e^2(\theta) + 4\,(q-1)\,a\,c\,\sin^2{\theta}\,\cos^2{\theta}}\;.\end{equation}Approximation~\eqref{eq:shiftm2} is exactly equivalent to the \emph{acoustic approximation} of \cite{GEO63-02-06230631,GEO65-04-12391250},derived with a different set of parameters by formally setting the $S$-wavevelocity ($l=v_S^2$) in equation~(\ref{eq:qp}) to zero. A similar approximation is analyzed by \cite{ANI00-00-03490361}.Approximation~\eqref{eq:shiftm2} was proved to possess a remarkable accuracyeven for large phase angles and significant amounts of anisotropy.Figure~\ref{fig:errphp} compares the accuracy of different approximations usingthe parameters of the Greenhorn shale. The acoustic approximation appearsespecially accurate for phase angles up to about 25 degrees and does notexceed the relative error of 0.3\% even for larger angles.\plot{errphp}{height=3in}{Relative error of different phase velocity approximations for the Greenhorn shale anisotropy. Short dash: Thomsen's weak anisotropy approximation. Long dash: Muir's approximation. Solid line: suggested approximation (similar to Alkhalifah's acoustic approximation.)}\section{Shifted hyperbola approximation for the group velocity}Similar strategy is applicable for approximating the group velocity. Applyingthe shifted hyperbola approach to ``unlinearize'' Muir'sapproximation~(\ref{eq:muir2}), we seek an approximation of the form\begin{equation} \label{eq:shiftM} \frac{1}{V_P^2(\Theta)} \approx E(\Theta)\,(1-S) + S\,\sqrt{E^2(\Theta) + \frac{2\,(Q-1)\,A\,C\, \sin^2{\Theta}\,\cos^2{\Theta}}{S}}\end{equation}An approximation of this form with $S$ set to $1/2$ was proposed earlier by\cite{SEG-2001-01060109}. Similarly to the case of the phase velocityapproximation, I constrain the value of $S$ by Taylor fitting of the velocityprofiles near the vertical angle.Although there is no simple explicit expression for the transversallyisotropic group velocity, we can differentiate the parametric representationsof $V_P$ and $\Theta$ in terms of the phase angle $\theta$ that follow fromequation~(\ref{eq:group}). The group velocity is an even function of the angle$\Theta$ because of the VTI symmetry. Therefore, the odd-order derivatives arezero at the axis of symmetry ($\Theta=\theta=0$). Fitting the second-orderderivative $d^2 V_P/d\Theta^2$ at $\theta=0$ produces $Q=1/q=1+2\,\eta$,consistent with Muir's approximation~(\ref{eq:muir2}). Fitting additionallythe fourth-order derivative $d^4 V_P/d\Theta^4$ at $\theta=0$ produces\begin{equation} \label{eq:Sval} S = \frac{1}{2}\,\frac{ \left[(l+f)^2 + l\,(c-l)\right]^2\,\left[(c-l)\,(a-l) - (l+f)^2\right]}{ a^2\,c\,(c-l)\,(l+f)^2 - \left[l\,(c-l) + (l+f)^2\right]^3}\end{equation}or, equivalently,\begin{equation} \label{eq:Sval2} S = \frac{1}{2}\,\frac{(C-A)\,(Q-1)\,(\hat{Q}-1)} {C\,\left(\hat{Q}\,(Q^2-Q-1) + 1\right) + A\,\left(\hat{Q}-Q^3+Q^2-1\right)}\;,\end{equation}where $\hat{Q}=1/\hat{q}$. \new{As in} theprevious section, I approximate the optimal value of $S$ by setting $\hat{Q}$equal to $Q$, as follows:\begin{equation} \label{eq:Sappr} S \approx \lim_{\hat{Q} \rightarrow Q} S = \frac{1}{2\,(1+Q)} = \frac{1}{4\,(1 + \eta)}\;.\end{equation}Selected in this way, the value of $S$ depends on the anelliptic parameter $Q$(or $\eta$) and, for small anellipticity, is close to $1/4$, which isdifferent from the value of $1/2$ in the approximation of\cite{SEG-2001-01060109}.The final group velocity approximation takes the form\begin{equation} \label{eq:shiftM2} \frac{1}{V^2_{P}(\Theta)} \approx \frac{1+2\,Q}{2\,(1+Q)}\,E(\Theta) + \frac{1}{2\,(1+Q)}\,\sqrt{E^2(\Theta) + 4\,(Q^2-1)\,A\,C\,\sin^2{\Theta}\,\cos^2{\Theta}}\;.\end{equation}In Figure~\ref{fig:errgrp}, the accuracy of approximation~(\ref{eq:shiftM2})is compared with the accuracy of Muir's approximation~(\ref{eq:muir2}) and theaccuracy of the weak anisotropy approximation \cite[]{GEO51-10-19541966} for theelastic parameters of the Greenhorn shale. The weak anisotropy approximation,used in this comparison, is\begin{equation} \label{eq:thoms2} V_P^2(\Theta) \approx c\,\left(1 + 2\,\epsilon\,\sin^4{\Theta} + 2\,\delta\,\sin^2{\Theta}\,\cos^2{\Theta}\right)\;,\end{equation}where $\epsilon$ and $\delta$ are Thomsen's parameters, defined inequations~(\ref{eq:epsdelta}). A similar form (in a differentparameterization) was introduced by \cite{GEO54-12-15641574}.Approximation~(\ref{eq:shiftM2}) turns out to be remarkably accurate\new{for} this example. It appears nearly exact for group angles up to 45degrees from vertical and does not exceed 0.3\% relative error even at\new{larger} angles. It is compared with two other approximations in
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -