⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 paper.tex

📁 国外免费地震资料处理软件包
💻 TEX
📖 第 1 页 / 共 3 页
字号:
\title{On anelliptic approximations for $qP$ velocities \\ in\new{transversally isotropic} media}\email{sergey.fomel@beg.utexas.edu}\author{Sergey Fomel}\maketitle\begin{abstract}I develop a unified approach for approximating phase and group  velocities of $qP$ seismic waves in a transversally isotropic medium  with the vertical axis of symmetry (VTI). While the exact phase  velocity expressions involve four independent parameters to  characterize the elastic medium, the proposed approximate  expressions use only three parameters. This makes them more  convenient for use in surface seismic experiments, where estimation  of all the four parameters is problematic. The three-parameter  phase-velocity approximation coincides with the previously published  ``acoustic'' approximation of Alkhalifah. The group velocity  approximation is `new and noticeably more accurate than some of the  previously published approximations. I demonstrate an application of  the group velocity approximation for finite-difference computation  of traveltimes.\end{abstract}\section{Introduction}Anellipticity (deviation from ellipse) is an important characteristic ofelastic wave propagation. One of the simplest and yet practically importantcases \new{of anellipticity occurs} in transversally isotropic media withthe vertical axis of symmetry (VTI). In this type of media, the phasevelocities of $qSH$ waves and the corresponding wavefronts are elliptic, whilethe phase and group velocities of $qP$ and $qSV$ waves may exhibit stronganellipticity \cite[]{tsvankin}.The exact expressions for the phase velocities of $qP$ and $qSV$ waves in VTImedia involve four independent parameters. However, it has been observed thatonly three parameters influence wave propagation % at small angles from the vertical axis and are of interest to surface seismic methods\cite[]{GEO60-05-15501566}. Moreover, the exact expressions for the groupvelocities in terms of the group angle are difficult to obtain and toocumbersome for practical use. This explains the need for developing practicalthree-parameter approximations for both group and phase velocities in VTImedia.Numerous different successful approximations have been previously developed\cite[]{GEO54-12-15641574,jse,GEO60-05-15501566,GEO63-02-06230631,GEO65-04-13161325,GEO65-03-09190933,ANI00-00-03490361,SEG-2001-01060109}.In this paper, I attempt to construct a unified approach for derivinganelliptic approximations.The starting point is the anelliptic approximation of Muir\cite[]{Muir.sep.44.55,jse}. Although not the most accurate for immediatepractical use, this approximation possesses remarkable theoretical properties.The Muir approximation correctly captures the linear part of anellipticbehavior. It can be applied to find more accurate approximations withnonlinear dependence on the anelliptic parameter. A particular way of``unlinearizing'' the linear approximation is the shifted hyperbola approach,familiar from the isotropic approximations in vertically inhomogeneous media\cite[]{malov,Sword.sep.51.313,GEO53-02-01430157,GEO59-06-09830999} and from thetheory of Stolt stretch \cite[]{GEO43-01-00230048,mystolt}. I show that applyingthis idea to approximate the phase velocity of $qP$ waves leads to the known``acoustic'' approximation of \cite{GEO63-02-06230631,GEO65-04-12391250},derived in a different way.  Applying the same approach to approximate thegroup velocity of $qP$ waves leads to a new remarkably accuratethree-parameter approximation.One practical use for the group velocity approximation is traveltimecomputations, required for Kirchhoff imaging and tomography. In the last partof the paper, I show examples of finite-difference traveltime computationsutilizing the new approximation.\section{Exact expressions}Wavefront propagation in the general anisotropic media can bedescribed with the anisotropic eikonal equation\begin{equation}  \label{eq:eikonal}  v^2\left(\frac{\nabla T}{|\nabla T|},\mathbf{x}\right)\,|\nabla T|^2 =   1\;,\end{equation}where $\mathbf{x}$ is a point in space, \new{$T(\mathbf{x})$} is thetraveltime \new{at that point for} a given source, and$v(\mathbf{n},\mathbf{x})$ is the \emph{phase velocity} in the phase direction$\mathbf{n} = \frac{\nabla T}{|\nabla T|}$.In the case of VTI media, the three modes of elastic wave propagation($qSH$, $qSV$, and $qP$) have the following well-known explicitexpressions for the phase velocities \cite[]{gassmann}:\begin{eqnarray}  \label{eq:qsh}  v_{SH}^2(\mathbf{n},\mathbf{x}) & = &   m\,\sin^2{\theta} + l\,\cos^2{\theta}\;; \\  \nonumber  v^2_{SV}(\mathbf{n},\mathbf{x}) & = &  \frac{1}{2}\,\left[(a+l)\,\sin^2{\theta} + (c+l)\,\cos^2{\theta}\right] -  \\  & & \frac{1}{2}\,\sqrt{\left[(a-l)\,\sin^2{\theta} -       (c-l)\,\cos^2{\theta}\right]^2 +      4\,(f+l)^2\,\sin^2{\theta}\,\cos^2{\theta}}\;;   \label{eq:qsv} \\  \nonumber  v^2_{P}(\mathbf{n},\mathbf{x}) & = &  \frac{1}{2}\,\left[(a+l)\,\sin^2{\theta} + (c+l)\,\cos^2{\theta}\right] +  \\  & & \frac{1}{2}\,\sqrt{\left[(a-l)\,\sin^2{\theta} - (c-l)\,\cos^2{\theta}\right]^2 +      4\,(f+l)^2\,\sin^2{\theta}\,\cos^2{\theta}}\;,    \label{eq:qp}\end{eqnarray}where, in the notation of \cite{backus} and \cite{GEO44-05-08960917},$a=c_{11}$, $c=c_{33}$, $f=c_{13}$, $l=c_{55}$, $m=c_{66}$, $c_{ij}(\mathbf{x})$are the density-normalized components of the elastic tensor, and $\theta$ isthe phase angle between the phase direction $\mathbf{n}$ and the axis ofsymmetry.  The group velocity describes the propagation of individual ray trajectories$\mathbf{x}(\tau)$.  It can be determined from the phase velocity using thegeneral expression\begin{equation}  \mathbf{V} = \frac{d \mathbf{x}}{d \tau} =  v \mathbf{n} + \left(\mathbf{I} - \mathbf{n}\, \mathbf{n}^T\right)   \nabla_{\mathbf{n}} v\;,  \label{eq:group}\end{equation}where $\mathbf{I}$ denotes the identity matrix, $\mathbf{n}^T$ stands for thetranspose of $\mathbf{n}$, \new{and $\nabla_{\mathbf{n}} v$ is the gradient  of $v$ with respect to $\mathbf{n}$}. The two terms inequation~(\ref{eq:group}) are clearly orthogonal to each other. Therefore, thegroup velocity magnitude is\cite[]{GEO20-04-07800806,GEO44-05-08960917,GEO49-11-19081914}\begin{equation}  \label{eq:f}  V = |\mathbf{V}| = \sqrt{v^2 + v_{\theta}^2}\;,\end{equation}where \begin{equation}  \label{eq:falpha}  v_{\theta}^2 =  \left|\left(\mathbf{I} - \mathbf{n}\,      \mathbf{n}^T\right) \nabla_{\mathbf{n}} v\right|^2 =  \left|\nabla_{\mathbf{n}} v\right|^2 -   \left|\mathbf{n} \cdot \nabla_{\mathbf{n}} v\right|^2\;.\end{equation}The group velocity has a particularly simple form in the case of ellipticanisotropy. \new{Specifically}, the phase velocity squared \new{has} thequadratic form\begin{equation}  \label{eq:ellips}  v_{\mbox{ell}}^2(\mathbf{n},\mathbf{x}) =   \mathbf{n}^T\,\mathbf{A}(\mathbf{x})\,\mathbf{n}\end{equation}with a symmetric positive-definite matrix $\mathbf{A}$, and the groupvelocity is \begin{equation}  \label{eq:ellf}  \mathbf{V}_{\mbox{ell}} = \mathbf{A}\,\mathbf{p}\;, \end{equation}where $\mathbf{p} = \nabla T = \mathbf{n}/v(\mathbf{n},\mathbf{x})$.The corresponding group slowness squared has the explicit expression\begin{equation}  \label{eq:ellv}  \frac{1}{V_{\mbox{ell}}^2(\mathbf{N},\mathbf{x})} =     \mathbf{N}^T\,\mathbf{A}^{-1}(\mathbf{x})\,\mathbf{N}\;, \end{equation}where $\mathbf{N}$ is the group direction, and $\mathbf{A}^{-1}$ is the matrixinverse of $\mathbf{A}$. For example, the elliptic expression~(\ref{eq:qsh}) forthe phase velocity of $qSH$ waves in VTI media transforms into a completelyanalogous expression for the group slowness\begin{equation}  \label{eq:ellsh}  \frac{1}{V_{SH}^2(\mathbf{N},\mathbf{x})}  =   M\,\sin^2{\Theta} + L\,\cos^2{\Theta}\end{equation}where $M=1/m$, $L=1/l$, and $\Theta$ is the angle between the group direction$\mathbf{N}$ and the axis of symmetry.\inputdir{Math}The situation is more complicated in the anelliptic case.Figure~\ref{fig:exph} shows the $qP$ and $qSV$ phase velocity profiles in atransversely isotropic material -- Greenhorn shale \cite[]{GEO46-03-02880297},which has the parameters $a=14.47\,\mbox{km}^2/\mbox{s}^2$,$l=2.28\,\mbox{km}^2/\mbox{s}^2$, $c=9.57\,\mbox{km}^2/\mbox{s}^2$, and$f=4.51\,\mbox{km}^2/\mbox{s}^2$. Figure~\ref{fig:exgr} shows thecorresponding group velocity profiles. The non-convexity of the $qSV$ phasevelocity causes a multi-valued (triplicated) group velocity profile. Theshapes of all the surfaces are clearly anelliptic.\plot{exph}{height=3in}{Phase velocity profiles for $qP$ (outer curve) and  $qSV$ (inner curve) waves in a transversely isotropic material (Greenhorn  shale).}\plot{exgr}{height=3in}{Group velocity profiles for $qP$ (outer curve) and  $qSV$ (inner curve) waves in a transversely isotropic material (Greenhorn  shale).}A simple model of anellipticity is suggested by the Muir approximation\cite[]{Muir.sep.44.55,jse}, reviewed in the next section.\section{Muir approximation}\cite{Muir.sep.44.55} suggested representing anelliptic $qP$ phasevelocities with the following approximation:\begin{equation}\label{eq:muph}  v_P^2(\theta) \approx e(\theta) + \frac{(q-1)\,a\,c\,\sin^2{\theta}\,\cos^2{\theta}}{e(\theta)}\;,\end{equation}where $e(\theta)$ is the elliptical part of the velocity, defined by\begin{equation}\label{eq:muel}e(\theta) = a\,\sin^2{\theta} + c\,\cos^2{\theta}\;,\end{equation}and $q$ is the anellipticity coefficient ($q=1$ in case of ellipticvelocities). Approximation~(\ref{eq:muph}) uses only three parameters tocharacterize the medium ($a$, $c$, and $q$) as opposed to the four parameters($a$, $c$, $l$, and $f$) in the exact expression.There is some freedom in choosing an appropriate value for the coefficient$q$. Assuming near-vertical wave propagation and the vertical axis of symmetry(a VTI medium) and fitting the curvature ($d^2 v_P/d \theta^2$) of the exactphase velocity~\eqref{eq:qp} near the vertical phase angle ($\theta = 0$),leads to the definition \cite[]{jse}\begin{equation}  \label{eq:qpdef}  q = \frac{l\,(c-l) + (l+f)^2}  {a\,(c-l)}\;.\end{equation}In terms of Thomsen's elastic parameters $\epsilon$ and $\delta$\cite[]{GEO51-10-19541966} and the elastic parameter $\eta$ of\cite{GEO60-05-15501566},\begin{equation}  \label{eq:eta2q}  q = \frac{1 + 2\,\delta}{1 + 2\epsilon}= \frac{1}{1 + 2\,\eta}\;.\end{equation}This confirms the direct relationship between $\eta$ and anellipticity.  If wewere to fit the phase velocity curvature near the horizontal axis$\theta=\pi/2$ (perpendicular to the axis of symmetry), the appropriate valuefor $q$ would be

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -