📄 exgr.ma
字号:
GS = {A -> 3.41, B -> 0.54, C -> 2.27, D -> 1.07};GS = {A -> 14.47, C -> 9.57, B -> 2.28, D -> 4.51}; AngP[a_,b_]:=(a^2*(A*b^2*(B - C) + a^2*(B - C)^2 + b^2*(B*(B + C) + 4*B*D + 2*D^2) + (B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2)/ (2*(A^4*b^6 + a^6*(B - C)^2*(B^2 + C^2) + b^4*B^3*(b^2*B + Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + A^3*b^4*(-2*b^2*B + 2*a^2*(B - C) + Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + A^2*b^2*(a^4*B^2 + 3*a^2*b^2*B^2 + 2*b^4*B^2 - 2*a^4*B*C + 2*a^2*b^2*B*C + a^4*C^2 + a^2*b^2*C^2 + 8*a^2*b^2*B*D + 4*a^2*b^2*D^2 + (-(b^2*B) + a^2*(B - C))* Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + a^2*b^2*(b^2*(B^2*(B + C)*(3*B + C) + 4*B^2*(3*B + C)* D + 2*B*(7*B + C)*D^2 + 8*B*D^3 + 2*D^4) + (2*B + C)*(B*(B + C) + 4*B*D + 2*D^2)* Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + a^4*((B - C)^2*(B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^ 2 + 4*a^2*b^2*(B + D)^2] + b^2*(3*B^4 + 2*B^3*(C + 6*D) + 2*B*(C + 4*D)* (C^2 + D^2) + 2*D^2*(2*C^2 + D^2) + B^2*(3*C^2 + 4*C*D + 14*D^2))) + A*b^2*(Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]*(-(b^2*B^2) + a^2*(3*B^2 - C^2 + 4*B*D + 2*D^2)) + 2*(-(b^4*B^3) + a^4*(B - C)*(2*B^2 + C^2 + 2*B*D + D^2) + a^2*b^2*(B*(B^2 - 2*B*C - C^2) + 2*B*(B - C)*D + (B - C)*D^2)))));AngSV[a_,b_]:=-(a^2*(A*b^2*(B - C) + a^2*(B - C)^2 + b^2*(B*(B + C) + 4*B*D + 2*D^2) - (B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2)/ (2*(-(A^4*b^6) - a^6*(B - C)^2*(B^2 + C^2) + b^4*B^3*(-(b^2*B) + Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + A^3*b^4*(2*b^2*B - 2*a^2*(B - C) + Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + a^2*b^2*(-(b^2*(B^2*(B + C)*(3*B + C) + 4*B^2*(3*B + C)*D + 2*B*(7*B + C)*D^2 + 8*B*D^3 + 2*D^4)) + (2*B + C)*(B*(B + C) + 4*B*D + 2*D^2)* Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]) + A^2*b^2*(-2*b^4*B^2 - a^4*(B - C)^2 - (b^2*B + a^2*(-B + C))* Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2] - a^2*b^2*(3*B^2 + C^2 + 4*D^2 + 2*B*(C + 4*D))) + a^4*((B - C)^2*(B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^ 2 + 4*a^2*b^2*(B + D)^2] - b^2*(3*B^4 + 2*B^3*(C + 6*D) + 2*B*(C + 4*D)* (C^2 + D^2) + 2*D^2*(2*C^2 + D^2) + B^2*(3*C^2 + 4*C*D + 14*D^2))) + A*b^2*(Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]*(-(b^2*B^2) + a^2*(3*B^2 - C^2 + 4*B*D + 2*D^2)) + 2*(b^4*B^3 - a^4*(B - C)*(2*B^2 + C^2 + 2*B*D + D^2) + a^2*b^2*(-B^3 + 2*B^2*(C - D) + C*D^2 + B*(C^2 + 2*C*D - D^2))))));GruP[a_,b_]:=(b^2*(A^2*b^2 + a^2*A*B - 2*A*b^2*B + a^2*B^2 + b^2*B^2 - a^2*A*C + a^2*B*C + 4*a^2*B*D + 2*a^2*D^2 + (A + B)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2 + a^2*(A*b^2*(B - C) + a^2*(B - C)^2 + b^2*(B*(B + C) + 4*B*D + 2*D^2) + (B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2)/ (2*(A^2*b^4 + b^4*B^2 + a^4*(B - C)^2 - 2*A*b^2*(b^2*B + a^2*(-B + C)) + 2*a^2*b^2*(B*(B + C) + 4*B*D + 2*D^2))* (b^2*(A + B) + a^2*(B + C) + Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]));GruSV[a_,b_]:=(b^2*(A^2*b^2 + a^2*A*B - 2*A*b^2*B + a^2*B^2 + b^2*B^2 - a^2*A*C + a^2*B*C + 4*a^2*B*D + 2*a^2*D^2 - (A + B)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2 + a^2*(A*b^2*(B - C) + a^2*(B - C)^2 + b^2*(B*(B + C) + 4*B*D + 2*D^2) - (B + C)*Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2])^2)/ (2*(A^2*b^4 + b^4*B^2 + a^4*(B - C)^2 - 2*A*b^2*(b^2*B + a^2*(-B + C)) + 2*a^2*b^2*(B*(B + C) + 4*B*D + 2*D^2))* (b^2*(A + B) + a^2*(B + C) - Sqrt[(b^2*(A - B) + a^2*(B - C))^2 + 4*a^2*b^2*(B + D)^2]));ParametricPlot[{Sqrt[GruSV[Cos[a], Sin[a]]] Sign[Sin[a]]Sqrt[ 1 - AngSV[Cos[a], Sin[a]]], Sqrt[GruSV[Cos[a], Sin[a]]]Sign[Cos[a]] Sqrt[AngSV[Cos[a], Sin[a]]]} /. GS, {a, 0, 2 Pi}, AspectRatio -> Automatic, PlotStyle->AbsoluteThickness[2]];ParametricPlot[{Sqrt[GruP[Cos[a], Sin[a]]] Sign[Sin[a]]Sqrt[ 1 - AngP[Cos[a], Sin[a]]], Sqrt[GruP[Cos[a], Sin[a]]]Sign[Cos[a]] Sqrt[AngP[Cos[a], Sin[a]]]} /. GS, {a, 0, 2 Pi}, AspectRatio -> Automatic, PlotStyle->AbsoluteThickness[2]];Show[%,%%,Frame->True,FrameLabel->{"Horizontal component(km/s)","Vertical component (km/s)",None,None}, PlotLabel->"Group Velocity Profiles (Wavefronts)"];Display["junk_ma.eps",%,"EPS"];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -