📄 app.tex
字号:
%\APPENDIX{A}%\section{Review of the asymptotic inverse theory}%\newpage\append{Least-squares Radon transform inversion}This appendix exemplifies the application of adjoint operators byreviewing the analytical least-squares inversion of the classic Radontransform (slant stack operator).Forming the product ${\bf A^{T}\,A}$ for this case leadsto the double integral\begin{eqnarray}H(z,x) & = & {\bf (A^{T}\,A)}[M(z,x)] = \nonumber \\& = & \iint\,\widehat{w}(y;z,x)\,w\left(\xi;\widehat{\theta}(y;z,x),y\right)\,M\left(\theta\left(\xi;\widehat{\theta}(y;z,x),y\right),\xi\right)\,d\xi\,dy =\nonumber \\& = & \iint\,M\left(z + y\,(\xi - x)\right)\,d\xi\,dy\;.\label{eqn:LSradon2}\end{eqnarray}Applying Fourier transform with respect to $z$, we can rewriteequation (\ref{eqn:LSradon2}) in the frequency domain as\begin{equation}\check{H}(\omega,x) = \int\,\check{M}(\omega,\xi)\,\int\,e^{i\omega\,y\,(\xi-x)}\,dy\,d\xi\;,\label{eqn:Fourier}\end{equation}where\begin{eqnarray}\check{H}(\omega,x) & = & \int\,H(z,x)\,e^{-i\omega\,z}\,dz\;, \\\check{M}(\omega,x) & = & \int\,M(z,x)\,e^{-i\omega\,z}\,dz\;.\end{eqnarray}The inner integral in equation (\ref{eqn:Fourier}) reduces to the $m$-dimensionaldelta function:\begin{equation}\check{H}(\omega,x) = (2\,\pi)^m\,\int\,\check{M}(\omega,\xi)\,\delta\left(\omega^m\,(\xi-x)\right)\,d\xi\;.\end{equation}As follows from the properties of delta function,\begin{equation}\check{H}(\omega,x) = {{(2\,\pi)^m} \over {|\omega|^m}}\,\int\,\check{M}(\omega,\xi)\,\delta(\xi-x)\,d\xi\; = {{(2\,\pi)^m} \over {|\omega|^m}}\,\check{M}(\omega,x)\;.\label{eqn:NoDelta}\end{equation}Inverting (\ref{eqn:NoDelta}) for $M$, we conclude that\begin{equation}{\bf (A^{T}\,A)^{-1}} = {{|{\bf D}|^m} \over {(2\,\pi)^m}}\;.\label{eqn:LSradon}\end{equation}Substituting equation~(\ref{eqn:LSradon}) into~(\ref{eqn:LS}) producesthe result precisely equivalent to Radon'sinversion~(\ref{eqn:radon}).%\APPENDIX{C}%\section{Constant velocity migration}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -